RESUMEN
Mitochondria, vital organelles that generate ATP, determine cell fate. Dysfunctional and damaged mitochondria are fragmented and removed through mitophagy, a mitochondrial quality control mechanism. The FDA-approved drug IMQ, a synthetic agonist of Toll-like receptor 7, exhibits antitumor activity against various skin malignancies. We previously reported that IMQ promptly reduced the level of the antiapoptotic Mcl-1 protein and that Mcl-1 overexpression attenuated IMQ-triggered apoptosis in skin cancer cells. Furthermore, IMQ profoundly disrupted mitochondrial function, promoted mitochondrial fragmentation, induced mitophagy, and caused cell death by generating high levels of ROS. However, whether Mcl-1 protects mitochondria from IMQ treatment is still unknown. In this study, we demonstrated that Mcl-1 overexpression induced resistance to IMQ-induced apoptosis and reduced both IMQ-induced ROS generation and oxidative stress in cancer cells. Mcl-1 overexpression maintained mitochondrial function and integrity and prevented mitophagy in IMQ-treated cancer cells. Furthermore, IL-6 protected against IMQ-induced apoptosis by increasing Mcl-1 expression and attenuating IMQ-induced mitochondrial fragmentation. Mcl-1 overexpression ameliorates IMQ-induced ROS generation and mitochondrial fragmentation, thereby increasing mitochondrial stability and ultimately attenuating IMQ-induced cell death. Investigating the roles of Mcl-1 in mitochondria is a potential strategy for cancer therapy development.
RESUMEN
OBJECTIVES: Magnetic resonance imaging (MRI) is a critical noninvasive technique for evaluating liver steatosis, with efficient and precise fat quantification being essential for diagnosing liver diseases. This study leverages 5 T ultra-high-field MRI to demonstrate the clinical significance of liver fat quantification, and explores the consistency and accuracy of the Proton Density Fat Fraction (PDFF) in the liver across different magnetic field strengths and measurement methodologies. METHODS: The study involved phantoms with lipid contents ranging from 0 % to 30 % and 35 participants (21 females, 14 males; average age 30.17 ± 13.98 years, body mass index 25.84 ± 4.76, waist-hip ratio 0.84 ± 0.09). PDFF measurements were conducted using chemical shift encoded (CSE) MRI at 5 T, 3 T, and 1.5 T, alongside magnetic resonance spectroscopy (MRS) at 5 T and 1.5 T for both liver and phantoms, analyzed using jMRUI software. The MRS-derived PDFF values served as the reference standard. Repeatability of 5 T MRI measurements was assessed through correlation analysis, while accuracy was evaluated using linear regression analysis against the reference standards. RESULTS: The CSE-PDFF measurements at 5 T demonstrated strong consistency with those at 3 T and 1.5 T, showing high intraclass correlation coefficients (ICC) of 0.988 and 0.980, respectively (all p < 0.001). There was also significant consistency across ROIs within liver lobes, with ICC values ranging from 0.975 to 0.986 (all p < 0.001). MRS-PDFF measurements for both phantoms and liver at 5 T and 1.5 T exhibited substantial agreement, with ICC values of 0.996 and 0.980, respectively (all p < 0.001). Particularly, ICC values for ROIs in the liver ranged from 0.963 to 0.990 (all p < 0.001). Despite overall agreement, statistically significant differences were noted in specific ROIs within the liver lobes (p = 0.004 and 0.012). The CSE and MRS PDFF measurements at 5 T displayed strong consistency, with an ICC of 0.988 (p < 0.001), and significant agreement was also found between 5 T CSE and 1.5 T MRS PDFF measurements, with an ICC of 0.978 (p < 0.001). Agreement was significant within the ROIs of the liver lobes on the same platform at 5 T, with ICC values ranging from 0.986 to 0.991 (all p < 0.001). CONCLUSION: PDFF measurements at 5 T MR imaging exhibited both accuracy and repeatability, indicating that 5 T imaging provides reliable quantification of liver fat content and shows substantial potential for clinical diagnostic applications.
Asunto(s)
Estudios de Factibilidad , Imagen por Resonancia Magnética , Fantasmas de Imagen , Humanos , Femenino , Masculino , Adulto , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Hígado Graso/diagnóstico por imagen , Hígado/diagnóstico por imagen , Tejido Adiposo/diagnóstico por imagen , Persona de Mediana EdadRESUMEN
The cGAS-STING pathway plays an essential role in the activation of tumor immune cells. Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants with potential carcinogenicity, and their exposure is associated with the development of colorectal cancer. However, the impacts of genetic factors in the cGASâSTING pathway and geneâenvironment interactions on colorectal cancer remain understudied. We used logistic regression models and interaction analysis to evaluate the impact of genetic variants on colorectal cancer risk and geneâenvironment interactions. We analysed the expression patterns of candidate genes based on the RNA-seq data. Molecular biology experiments were performed to investigate the impact of PAHs exposure on candidate gene expression and the progression of colorectal cancer. We identified the susceptibility locus rs3750511 in the cGASâSTING pathway, which is associated with colorectal cancer risk. A negative interaction between TRAF2 rs3750511 and PAHs exposure was also identified. Single-cell RNA-seq analysis revealed significantly elevated expression of TRAF2 in colorectal cancer tissues compared with normal tissues, especially in T cells. BPDE exposure increased TRAF2 expression and the malignant phenotype of colorectal cancer cells. The treatment also further increased the expression of the TRAF2 downstream gene NF-κB and decreased the expression of Caspase8. Our results suggest that the genetic variant of rs3750511 affects the expression of TRAF2, thereby increasing the risk of colorectal cancer through interaction with PAHs. Our study provides new insights into the influence of geneâenvironment interactions on the risk of developing colorectal cancer.
Asunto(s)
Neoplasias Colorrectales , Interacción Gen-Ambiente , Proteínas de la Membrana , Nucleotidiltransferasas , Hidrocarburos Policíclicos Aromáticos , Humanos , Neoplasias Colorrectales/genética , Hidrocarburos Policíclicos Aromáticos/toxicidad , Proteínas de la Membrana/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Predisposición Genética a la Enfermedad , Transducción de Señal , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Polimorfismo de Nucleótido Simple , Masculino , Femenino , Variación Genética , Persona de Mediana EdadRESUMEN
BACKGROUND: Emotional lability (EL)-a transdiagnostic feature characterized by rapid emotional shifts-contributes significantly to functional impairment across psychiatric disorders, such as depression, bipolar disorder, and schizophrenia. Despite its clinical significance, its etiology remains poorly understood, hindering effective screening and interventions. Growing evidence suggests that metabolic alterations may play a crucial role in the pathophysiology of psychiatric disorders. METHODS: A comprehensive Mendelian randomization (MR) design incorporated summary-level data from extensive genome-wide association studies (GWAS) on serum metabolites (8299 European participants) and EL (3268 European samples) to investigate causal associations between genetically determined metabolite levels and EL. Assumptions of instrumental variables, heterogeneity, horizontal pleiotropy, and directionality were assessed alongside sensitivity analyses. RESULTS: Out of 1400 metabolites and ratios analyzed, 30 metabolites demonstrated causal associations with an increased risk of EL based on the inverse-variance weighted method. Sensitivity analyses identified three potential causal metabolites: hydrocinnamate (OR: 1.277, CI: 1.071-1.522, P = 0.0063), which is associated with an increased risk, while glycolithocholate (OR: 0.779, CI: 0.667-0.911, P = 0.0017) and 3ß-hydroxy-5-cholenoic acid (OR: 0.857, CI: 0.756-0.971, P = 0.015) are associated with a decreased risk. CONCLUSION: This MR study supports a causal link between hydrocinnamate, glycolithocholate, and 3ß-hydroxy-5-cholenoic acid levels and the incidence of EL, offering potential metabolic biomarkers and therapeutic targets for EL in psychiatric disorders.
RESUMEN
The thermodynamically and kinetically sluggish electrocatalytic C-N coupling from CO2 and NO3 - is inert to initially take place while typically occurring after CO2 protonation, which severely dwindles urea efficiency and carbon atom economy. Herein, we report a single O-philic adsorption strategy to facilitate initial C-N coupling of *OCO and subsequent protonation over dual-metal hetero-single-atoms in N2-Fe-(N-B)2-Cu-N2 coordination mode (FeN4/B2CuN2@NC), which greatly inhibits the formation of C-containing byproducts and facilitates urea electrosynthesis in an unprecedented C-selectivity of 97.1 % with urea yield of 2072.5â µg h-1 mgcat. -1 and 71.9 % Faradaic efficiency, outperforming state-of-the-art electrodes. The carbon-directed antibonding interaction with Cu-B is elaborated to benefit single O-philic adsorption of CO2 rather than conventional C-end or bridging O,O-end adsorption modes, which can accelerate the kinetics of initiated C-N coupling and protonation. Theoretical results indicate that the O-monodentate adsorption pathway benefits the thermodynamics of the C-N coupling of *OCO with *NO2 and the protonation rate-determining step, which markedly inhibits CO2 direct protonation. This oriented strategy of manipulating reactant adsorption patterns to initiate a specific step is universal to moderate oxophilic transition metals and offers a kinetic-enhanced path for multiple conversion processes.
RESUMEN
The fabrication of supramolecular light-harvesting systems (LHS) with sequential energy transfer is of significance in utilizing light energy. In this study, we report the non-covalent self-assembly of a sequential LHS by pillar[5]arene-based host-guest interaction in water and its applications in white light-emitting diode (LED) device and latent fingerprint imaging. The host-guest complex WP5 â ${ \supset }$ G self-assembles into nanoparticles in water and shows enhanced aggregation-induced emission (AIE) effect. The nanoparticles can be further used to construct sequential LHS with fluorescent dyes 4,7-di(2-thienyl)-benzo[2,1,3]thiadiazole (DBT) and sulforhodamine 101 (SR101). Impressively, the system shows white-light emission when the molar ratio of WP5 â ${ \supset }$ G/DBT/SR101 is 1100/2/16. The material can be coated on a LED bulb to achieve white-light emission. In addition, the sequential LHS exhibit multicolor fluorescence including red emission, which have been successfully applied to high-resolution imaging of latent fingerprints. Therefore, we demonstrated a general strategy for the construction of sequential LHS in water based on macrocyclic host-guest interaction and explored its multi-functional applications in white-light LED device and imaging of latent fingerprints, which will promote future development and application of supramolecular LHSs.
RESUMEN
Primary colon cancers arising from the left and right sides exhibit distinct clinical and molecular characteristics. Sidedness-associated heterogeneity relies intricately on the oncogenic properties of cancer cells and multicellular interactions in tumor microenvironments. Here, combining transcriptomic profiling of 426,863 single cells from 105 colon cancer patients and validation with spatial transcriptomics and large-scale histological analysis, we capture common transcriptional heterogeneity patterns between left- and right-sided malignant epithelia through delineating two side-specific expression meta-programs. The proliferation stemness meta-program is notably enriched in left-sided malignant epithelia that colocalize with Mph-PLTP cells, activated regulatory T cells (Tregs), and exhausted CD8-LAYN cells, constituting the glucose metabolism reprogramming niche. The immune secretory (IS) meta-program exhibits specific enrichment in right-sided malignant epithelia, especially in smoking patients with right-sided colon cancer. The IShigh malignant epithelia spatially localize in hypoxic regions and facilitate immune evasion through attenuating Mph-SPP1 cell antigen presentation and recruiting innate-like cytotoxicity-reduced CD8-CD161 cells.
Asunto(s)
Neoplasias del Colon , Microambiente Tumoral , Humanos , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Neoplasias del Colon/genética , Microambiente Tumoral/inmunología , Regulación Neoplásica de la Expresión Génica , Linfocitos T Reguladores/inmunología , Perfilación de la Expresión Génica , Transcriptoma/genética , Masculino , FemeninoRESUMEN
BACKGROUND: Hylurgus ligniperda, an invasive species originating from Eurasia, is now a major forestry quarantine pest worldwide. In recent years, it has caused significant damage in China. While traps have been effective in monitoring and controlling pests, manual inspections are labor-intensive and require expertise in insect classification. To address this, we applied a two-stage cascade convolutional neural network, YOLOX-MobileNetV2 (YOLOX-Mnet), for identifying H. ligniperda and other pests captured in traps. This method streamlines target and non-target insect detection from trap images, offering a more efficient alternative to manual inspections. RESULTS: Two cascade convolutional neural network models were employed in two stages to detect both target and non-target insects from images captured in the same forest. Initially, You Only Look Once X (YOLOX) served as the target detection model, identifying insects and non-insects from the collected images, with non-insect targets subsequently filtered out. In the second stage, MobileNetV2, a classification network, classified the captured insects. This approach effectively reduced false positives from non-insect objects, enabled the inclusion of additional classification terms for multi-class insect classification models, and utilized sample control strategies to enhance classification performance. CONCLUSION: Application of the cascade convolutional neural network model accurately identified H. ligniperda, and Mean F1-score of all kinds of insects in the trap was 0.98. Compared to traditional insect classification, this method offers great improvement in the identification and early warning of forest pests, as well as provide technical support for the early prevention and control of forest pests. © 2024 Society of Chemical Industry.
Asunto(s)
Especies Introducidas , Redes Neurales de la Computación , Animales , Insectos/fisiología , Control de Insectos/métodos , ChinaRESUMEN
Amphiphilic asymmetric comb-like copolymers (AACCs) exhibit distinct self-assembly behaviours due to their unique architecture. However, the synthetic difficulties of well-defined AACCs have prohibited a systematic understanding of the architecture-morphology relationship. In this work, we conducted dissipative particle dynamics simulations to investigate the self-assembly behaviours of AACCs with responsive rigid side chains in selective solvents. The effects of side chain length, number of branches, and spacers on the morphology of aggregates were investigated by mapping out morphology diagrams. Besides, the numbers and surface areas of aggregates clearly depicted the morphological transitions during the self-assembly process. Moreover, the rod-to-coil conformation transitions were simulated to explore the stimuli-responsive behaviour of the AACCs with responsive rigid side chains by adjusting the bond angle parameter of the rigid chains. The results indicated that without the support of the rigid chains, the assembly structure collapsed, leading to the tube-to-channelized micelles and one-compartment-to-multicompartment vesicle morphology transformations. The simulation results are consistent with earlier experimental results, which can provide theoretical guidance for assembly toward desired nanostructures.
RESUMEN
BACKGROUD: Paecilomyces variotii has important economic value in stimulating crop growth, biodegradation, and other aspects. Up to now, there are no research reports on its mitochondrial genome. METHODS AND RESULTS: The mitochondrial genome of Paecilomyces variotii was determined with the next-generation sequencing method (Illumina, NovaSeq), and its characteristics were analyzed using various bioinformatics approaches. The length of complete mitochondrial genome sequence of P. variotii is 40,965 bp and consists of 14 protein-coding genes, 2 ribosomal RNA genes, 1 ribosomal protein S3 gene, 26 transport RNA genes. The results of phylogenetics analysis using Bayesian inference and Maximum likelihood methods showed that P. variotii belongs to the Eurotiales order in the Thermoascaceae family, and 9 genera within the Eurotiomycetes class were effectively distinguished with high support rates (bootstrap value > 92% and posterior probabilities > 99%). The analysis of synonymous substitution rates and nonsynonymous substitution rates indicated that the Ka/Ks values of the 14 PCGs in the mitochondrial genomes of the two orders in the Eurotiomycetes class ranged from 0 to 0.4333. CONCLUSIONS: This study revealed the structural and sequence information characteristics of the mitochondrial genome of P. variotii, and the phylogenetic results strongly support its classification within the family Thermoascaceae, consistent with traditional morphological taxonomy studies. The 14 PCGs in the mitochondrial genomes of the two orders in the Eurotiomycetes class are subject to strong purifying (negative) selection. The results of this research provides an important molecular basis for the development of genomics, evolutionary genetics and molecular markers of P. variotii in the future.
Asunto(s)
Byssochlamys , Genoma Mitocondrial , Genoma Mitocondrial/genética , Filogenia , Teorema de Bayes , HongosRESUMEN
BACKGROUND: Melanogenesis is the process of melanin maturation which not only protects skin from UV radiation but also plays an important role in antigenicity of melanomas. Imiquimod (IMQ) is a toll-like receptor 7 (TLR7) agonist that exhibits antiviral and anticancer activity. OBJECTIVE: To explore whether IMQ could induce melanogenesis in melanoma cells. METHODS: The mouse melanoma cell line B16F10, the mouse immortalized melanocyte Melan-A, and human melanoma cell lines MNT-1, C32 and A375 were utilized in this study. The pigmented level was observed by the centrifuged cell pellet. The intracellular and extracellular melanin levels were examined in the absorbance in NaOH-extracted cell lysate and cell-cultured medium, respectively. The expression of melanogenesis related proteins was examined by immunoblotting. The intracellular cyclic AMP amount was evaluated by the cAMP Glo assay kit. The activity of phosphodiesterase 4B (PDE4B) was investigated by CREB reporter assay with overexpressed PDE4B or not. RESULTS: We demonstrated that a low dose of IMQ could trigger melanogenesis in B16F10 cells. IMQ induced microphthalmia-associated transcription factor (MITF) nuclear translocation, upregulated the expression of melanogenesis-related proteins, increased tyrosinase (TYR) activity, and led to pigmentation in B16F10 cells. Next, we found that IMQ-induced melanogenesis was activated by excessive intracellular cAMP accumulation, which was regulated through IMQ-mediated PDE4B inhibition. Finally, IMQ-induced ROS production was found to be involved in melanogenesis by its control of PDE4B activity. CONCLUSIONS: Low dose of IMQ could activate melanogenesis through the ROS/PDE4B/PKA pathway in melanoma cells.
Asunto(s)
Melaninas , Melanoma Experimental , Animales , Ratones , Humanos , Imiquimod , Especies Reactivas de Oxígeno , Melanogénesis , Monofenol Monooxigenasa/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Línea Celular TumoralRESUMEN
PURPOSE: Although a number of studies involving small-vessel de novo coronary disease showed clinical benefits of drug-coated balloons (DCB), the role of DCB in large vessel lesions is still unclear. METHODS: We searched main electronic databases for randomized controlled trials (RCTs) comparing DCB with stents for large vessel de novo coronary artery disease. The primary endpoint was major cardiovascular adverse events (MACE), composite cardiovascular death (CD), myocardial infarction (MI), or target lesion revascularization (TLR). RESULTS: This study included 7 RCTs with 770 participants. DCB were associated with a marked risk reduction in MACE [Risk Ratio (RR): 0.48; 95% confidence interval [CI]: 0.24 to 0.97; P = 0.04], TLR (RR: 0.53; 95% CI: 0.25 to 1.14; P = 0.10), and late lumen loss [standard mean difference (SMD): -0.57; 95% CI: -1.09 to -0.05; P = 0.03] as compared with stents. There is no significant difference in MI (RR: 0.58; 95% CI: 0.21 to 1.54; P = 0.27), CD (RR: 0.33; 95% CI: 0.06 to 1.78; P = 0.19), and minimal lumen diameter (SMD: -0.34; 95% CI: -0.72 to 0.05; P = 0.08) between groups. In subgroup analyses, the risk reduction of MACE persisted in patients with chronic coronary syndrome (RR: 0.25; 95% CI: 0.07 to 0.89; P = 0.03), and patients receiving DCB vs. bare metal stent (RR: 0.19; 95% CI: 0.05 to 0.73; P = 0.01). In addition, there was no significant difference between the DCB group and the drug eluting stent group for MACE (RR: 0.69; 95% CI: 0.30 to 1.60; P = 0.38). CONCLUSION: DCB may be an effective therapeutic option in patients with large vessel de novo coronary artery disease.
RESUMEN
The human oral microbiome harbors one of the most diverse microbial communities in the human body, playing critical roles in oral and systemic health. Recent technological innovations are propelling the characterization and manipulation of oral microbiota. High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes. New long-read platforms improve genome assembly from complex samples. Single-cell genomics provides insights into uncultured taxa. Advanced imaging modalities including fluorescence, mass spectrometry, and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution. Fluorescence techniques link phylogenetic identity with localization. Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification. Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches. Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly, gene expression, metabolites, microenvironments, virulence mechanisms, and microbe-host interfaces in the context of health and disease. However, significant knowledge gaps persist regarding community origins, developmental trajectories, homeostasis versus dysbiosis triggers, functional biomarkers, and strategies to deliberately reshape the oral microbiome for therapeutic benefit. The convergence of sequencing, imaging, cultureomics, synthetic systems, and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict, prevent, diagnose, and treat associated oral diseases.
Asunto(s)
Biomimética , Disbiosis , Humanos , Filogenia , Homeostasis , Espectrometría de MasasRESUMEN
BACKGROUND: Ultrasonic for detecting and evaluating pleural effusion is an essential part of the Extended Focused Assessment with Sonography in Trauma (E-FAST) in emergencies. Our study aimed to develop an Artificial Intelligence (AI) diagnostic model that automatically identifies and segments pleural effusion areas on ultrasonography. METHODS: An Attention U-net and a U-net model were used to detect and segment pleural effusion on ultrasound images of 848 subjects through fully supervised learning. Sensitivity, specificity, precision, accuracy, F1 score, the receiver operating characteristic (ROC) curve, and the area under the curve (AUC) were used to assess the model's effectiveness in classifying the data. The dice coefficient was used to evaluate the segmentation performance of the model. RESULTS: In 10 random tests, the Attention U-net and U-net 's average sensitivity of 97% demonstrated that the pleural effusion was well detectable. The Attention U-net performed better at identifying negative images than the U-net, which had an average specificity of 91% compared to 86% for the U-net. Additionally, the Attention U-net was more accurate in predicting the pleural effusion region because its average dice coefficient was 0.86 as opposed to the U-net's average dice coefficient of 0.82. CONCLUSIONS: The Attention U-net showed excellent performance in detecting and segmenting pleural effusion on ultrasonic images, which is expected to enhance the operation and application of E-FAST in clinical work.
Asunto(s)
Inteligencia Artificial , Derrame Pleural , Humanos , Derrame Pleural/diagnóstico por imagen , Ultrasonografía , Área Bajo la Curva , Curva ROCRESUMEN
BACKGROUND: Phenylbutazone (PBZ) is the most commonly used drug to treat symptoms of lameness in horses; however, it is associated with adverse effects such as gastric ulcer syndrome (EGUS). Interestingly, many practitioners prescribe omeprazole (OME) concurrently with PBZ to prevent the development of EGUS. However, the efficacy and safety of this practice in Mongolian horses with chronic lameness remain unknown. OBJECTIVES: To evaluate the clinical effects of a combination of PBZ and OME on chronic lameness in Mongolian horses. STUDY DESIGN: Randomised block experimental design. METHODS: Eighteen Mongolian horses with lameness score was ≥3 points, were divided into three treatment groups, with six horses in each group: placebo (CON), PBZ (4.4 mg/kg PO q. 24 h), or PBZ plus OME (4 mg/kg PO q. 24 h; PBZ + OME) in a randomised block design based on the initial lameness score. The horses were treated for 15 days. During this period, weekly gastroscopy, and physiological and biochemical tests were performed. RESULTS: Both PBZ (median 1.0, interquartile range [IQR]: 0.8-1.3; p = 0.01) and PBZ + OME (median 1.0, IQR: 1.0-1.0; p = 0.01) significantly decreased the lameness score compared with before administration. In addition, PBZ significantly increased the equine glandular gastric disease (EGGD) score (3.0 ± 0.6, p < 0.001), GT-17 content (293.4 ± 21.8 pg/mL, p < 0.001), and pepsinogen-1 (PG1) content (295.3 ± 38.3 ng/mL, p < 0.001) compared with CON or PBZ + OME. However, it significantly reduced the total protein (53.6 ± 1.5 g/L, p < 0.05) and albumin (25.5 ± 1.8 g/L, p < 0.05) contents. Nevertheless, compared with PBZ, PBZ + OME significantly decreased the EGGD score (0.3 ± 0.5, p < 0.001) and significantly increased the gastric fluid pH (7.3 ± 0.5, p < 0.001), total protein content (62.5 ± 4.6 g/L, p = 0.009), and albumin content (29.4 ± 1.1 g/L, p = 0.004). Meanwhile, they significantly diminished the gastrin 17 (GT-17) (162.0 ± 21.0 pg/mL, p < 0.001) and PG1 (182.4 ± 22.5 ng/mL, p < 0.001) contents. MAIN LIMITATIONS: Individual differences in horses were larger, but the sample size was small. There was larger interval between observations for each index. CONCLUSIONS: Compared with PBZ alone, PBZ + OME had no therapeutic effect on chronic lameness; however, it reduced the occurrence of EGGD in Mongolian horses. Horses may be protected against chronic lameness and PBZ-induced EGGD by increasing the pH value, decreasing serum PG1 and GT-17 content, and preventing the reduction of myeloperoxidase content.
Asunto(s)
Enfermedades de los Caballos , Úlcera Gástrica , Caballos , Animales , Antiinflamatorios no Esteroideos , Omeprazol , Cojera Animal/tratamiento farmacológico , Cojera Animal/prevención & control , Fenilbutazona/uso terapéutico , Fenilbutazona/efectos adversos , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/prevención & control , Úlcera Gástrica/veterinaria , Enfermedades de los Caballos/tratamiento farmacológico , Enfermedades de los Caballos/prevención & control , Enfermedades de los Caballos/inducido químicamente , Albúminas/efectos adversosRESUMEN
Slow multi-proton coupled electron transfer kinetics and unexpected desorption of intermediates severely hinder the selectivity of CO2 methanation. In this work, a one-stone-two-bird strategy of pumping protons and improving adsorption configuration/capability enabled by electron localization is developed to be highly efficient for CH4 electrosynthesis over Cu single atoms anchored on bismuth vacancies of BiVO4 (Bi1-xVO4âCu), with superior kinetic isotope effect and high CH4 Faraday efficiency (92%), far outperforming state-of-the-art electrocatalysts for CO2 methanation. Control experiments and theoretical calculations reveal that the bismuth vacancies (VBi) not only act as active sites for H2O dissociation but also induce electron transfer toward Cu single-atom sites. The VBi-induced electron localization pumps *H from VBi sites to Cu single atoms, significantly promoting the generation and stabilization of the pivotal intermediate (*CHO) for highly selective CH4 electrosynthesis. The metal vacancies as new initiators show enormous potential in the proton transfer-involved hydrogenative conversion processes.
RESUMEN
Mitochondria are critical cellular energy resources and are central to the life of the neuron. Mitophagy selectively clears damaged or dysfunctional mitochondria through autophagic machinery to maintain mitochondrial quality control and homeostasis. Mature neurons are postmitotic and consume substantial energy, thus require highly efficient mitophagy pathways to turn over damaged or dysfunctional mitochondria. Recent evidence indicates that mitophagy is pivotal to the pathogenesis of neurological diseases. However, more work is needed to study mitophagy pathway components as potential therapeutic targets. In this review, we briefly discuss the characteristics of nonselective autophagy and selective autophagy, including ERphagy, aggrephagy, and mitophagy. We then introduce the mechanisms of Parkin-dependent and Parkin-independent mitophagy pathways under physiological conditions. Next, we summarize the diverse repertoire of mitochondrial membrane receptors and phospholipids that mediate mitophagy. Importantly, we review the critical role of mitophagy in the pathogenesis of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Last, we discuss recent studies considering mitophagy as a potential therapeutic target for treating neurodegenerative diseases. Together, our review may provide novel views to better understand the roles of mitophagy in neurodegenerative disease pathogenesis.
RESUMEN
The selective C(sp3)-S bond cleavage of thioethers was first developed to prepare unsymmetrical disulfides by using electrophilic halogenation reagents. In this strategy, NBS (N-bromosuccinimide) achieves selective furfuryl C(sp3)-S bond cleavage of furfuryl alkylthioethers at room temperature. Meanwhile, NFSI (N-fluorobenzenesulfonimide) enables selective methyl C(sp3)-S bond cleavage of aryl and alkyl methylthioethers at an elevated temperature. Notably, the substrate scope investigation indicates that the order of selectivity of the C-S bond cleavage is furfuryl C(sp3)-S > benzyl C(sp3)-S > alkyl C(sp3)-S > C(sp2)-S bond. Moreover, this practical and operationally simple strategy also provides an important complementary way to access various unsymmetrical disulfides with excellent functional group tolerances and moderate to good yields.
RESUMEN
In eukaryotes, lactate produced during glycolysis is involved in regulating multiple metabolic processes through lysine lactylation (Kla). To explore the potential link between metabolism and Kla in prokaryotes, we investigated the distribution of Kla in the cariogenic bacterium Streptococcus mutans during planktonic growth in low-sugar conditions and in biofilm-promoting, high-sugar conditions. We identified 1869 Kla sites in 469 proteins under these two conditions, with the biofilm growth state showing a greater number of lactylated sites and proteins. Although high sugar increased Kla globally, it reduced lactylation of RNA polymerase subunit α (RpoA) at Lys173. Lactylation at this residue inhibited the synthesis of extracellular polysaccharides, a major constituent of the cariogenic biofilm. The Gcn5-related N-acetyltransferase (GNAT) superfamily enzyme GNAT13 exhibited lysine lactyltransferase activity in cells and lactylated Lys173 in RpoA in vitro. Either GNAT13 overexpression or lactylation of Lys173 in RpoA inhibited biofilm formation. These results provide an overview of the distribution and potential functions of Kla and improve our understanding of the role of lactate in the metabolic regulation of prokaryotes.
Asunto(s)
Lisina , Streptococcus mutans , Biopelículas , Glucólisis , Ácido Láctico , AzúcaresRESUMEN
OBJECTIVE: Accurately predicting nipple-areola complex (NAC) involvement in breast cancer is essential for identifying eligible patients for a nipple-sparing mastectomy. This study was aimed at developing a pre-operative nomogram for NAC involvement in breast cancer using conventional ultrasound (US) and contrast-enhanced ultrasound (CEUS). METHODS: All patients with primary breast cancer confirmed by pre-operative biopsy underwent US and CEUS examinations. Post-operative pathology was used as the gold standard in assessing NAC involvement. Lasso regression was used to select the predictors most associated with NAC involvement. A nomogram was constructed to calculate the diagnostic efficacy. The data were internally verified with 500 bootstrapped replications, and a calibration curve was generated to validate the predictive capability. RESULTS: Seventy-six patients with primary breast cancer were included in this study, which included 16 patients (21.1%) with NAC involvement and 60 patients (78.9%) without NAC involvement. Among the 23 features of US and CEUS, Lasso regression selected one US feature and two CEUS features, namely, ductal echo extending from the lesion, ductal enhancement extending to the nipple and focal nipple enhancement. A nomogram was constructed, and the results revealed that the area under the curve, sensitivity, specificity and accuracy were 0.891, 81.3%, 86.7% and 85.5%, respectively. The calibration curve exhibited good consistency between the predicted probability and the actual probability. CONCLUSION: The nomogram developed based on US and CEUS had good performance in predicting NAC involvement in breast cancer before surgery, which may facilitate the selection of suitable patients for NAC preservation with greater oncological safety.