RESUMEN
Microbiologically influenced corrosion (MIC) in shale gas field is a major threat with the hydraulic fracturing fluid injected into the subsurface. In this study, the microbiome collected from a shale gas produced water sample was extracted and cultivated in ATCC 1249 medium modified with 10 g/L NaCl anaerobically at 30 °C. d-amino acids, which were reported as biocide enhancers, were found to enhance 2,2-dibromo-3-nitrilopropionamide (DBNPA) biocide on the mitigation of shale microbiome MIC on X80 carbon steel. The combination of 50 ppm (w/w) d-leucine + 50 ppm d-alanine + 1 ppm d-tyrosine had the best enhancement effect on 50 ppm DBNPA with 84 % less weight loss, and 67 % lower corrosion current density (icorr) compared to 50 ppm DBNPA alone. The corrosion data were consistent with the enhanced biofilm inhibition observation. The experimental data also indicated that d-tyrosine used alone at a low dosage of 1 ppm enhanced DBNPA considerably, with 44 % less weight loss and 47 % less icorr. The electrochemical results showed the positive response of shale gas microbiome biofilm to the injected magnetite nanoparticles indicating the extracellular electron transfer might be a main mechanism for its corrosion.
RESUMEN
To enhance the application of alkali-activated materials in mine filling, cemented tailings backfill was prepared using slag, fly ash, sodium silicate, and NaOH as primary constituents. The effects of the raw material type and dosage on the backfill were examined through a single-factor experiment. Additionally, response surface methodology (RSM) was utilized to optimize the mixing ratios of the backfill, with a focus on fluidity and compressive strength as key objectives. The evolution of backfill quality and compressive strength under the combined effects of dry-wet and freeze-thaw (DW-FT) cycles was analyzed. The hydration products, microstructure, and pore characteristics of the specimens were analyzed using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and nitrogen adsorption tests (NATs) across varying cycles. The results demonstrate that the optimal backfill composition includes 47.8% fly ash, 6.10% alkali equivalent, and a 1.44 sodium silicate modulus. The macroscopic behavior of the backfill under DW-FT coupling followed this progression: pore initiation â pore expansion â crack formation â crack propagation â structural damage. After a minor initial increase, the backfill strength steadily decreased. Microscopic analysis revealed that the decline in internal cementation products and the deterioration of pore structure were the primary causes of this strength reduction. Thus, the DW-FT coupling can cause significant erosion of the backfill. The technical solutions presented in this paper offer a reference for solid waste utilization and provide valuable insights into the durability of backfill under DW-FT coupling.
RESUMEN
BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease leading to end-stage renal disease. Total kidney volume (TKV) measurement has been considered as a surrogate in the evaluation of disease severity and prognostic predictor of ADPKD. However, the traditional manual measurement of TKV by medical professionals is labor-intensive, time-consuming, and human error prone. MATERIALS AND METHODS: In this investigation, we conducted TKV measurements utilizing magnetic resonance imaging (MRI) data. The dataset consisted of 30 patients with ADPKD and 10 healthy individuals. To calculate TKV, we trained models using both coronal- and axial-section MRI images. The process involved extracting images in Digital Imaging and Communications in Medicine (DICOM) format, followed by augmentation and labeling. We employed a U-net model for image segmentation, generating mask images of the target areas. Subsequent post-processing steps and TKV estimation were performed based on the outputs obtained from these mask images. RESULTS: The average TKV, as assessed by medical professionals from the testing dataset, was 1501.84 ± 965.85 mL with axial-section images and 1740.31 ± 1172.21 mL with coronal-section images, respectively (p = 0.73). Utilizing the deep learning model, the mean TKV derived from axial- and coronal-section images was 1536.33 ± 958.68 mL and 1636.25 ± 964.67 mL, respectively (p = 0.85). The discrepancy in mean TKV between medical professionals and the deep learning model was 44.23 ± 58.69 mL with axial-section images (p = 0.8) and 329.12 ± 352.56 mL with coronal-section images (p = 0.9), respectively. The average variability in TKV measurement was 21.6% with the coronal-section model and 3.95% with the axial-section model. The axial-section model demonstrated a mean Dice Similarity Coefficient (DSC) of 0.89 ± 0.27 and an average patient-wise Jaccard coefficient of 0.86 ± 0.27, while the mean DSC and Jaccard coefficient of the coronal-section model were 0.82 ± 0.29 and 0.77 ± 0.31, respectively. CONCLUSION: The integration of deep learning into image processing and interpretation is becoming increasingly prevalent in clinical practice. In our pilot study, we conducted a comparative analysis of the performance of a deep learning model alongside corresponding axial- and coronal-section models, a comparison that has been less explored in prior research. Our findings suggest that our deep learning model for TKV measurement performs comparably to medical professionals. However, we observed that varying image orientations could introduce measurement bias. Specifically, our AI model exhibited superior performance with axial-section images compared to coronal-section images.
RESUMEN
BACKGROUND: Hematoma clearance is crucial for treating intracerebral hemorrhage (ICH). Currently, there is a lack of pharmacological therapy aimed at promoting hematoma absorption. Meningeal lymphatic system, as a drain of brain, is a potential therapeutic approach in ICH. Panax Notoginseng Saponins (PNS), proven to promote lymphangiogenesis in periphery, effectively reduces hematoma in ICH patients. However, the potential pharmacological effect of PNS on meningeal lymphatic vessels (MLVs) remains unknown. PURPOSE: In this study, we aimed to investigate the impact of PNS on the meningeal lymphatic system and ICH. METHODS: The collagenase-ICH model was conducted to investigate the effect of PNS. Behavioral tests, including modified neurological severity score (mNSS) and foot-fault test, and hematoma volume were used to estimate the neurological function and curative effect. The structure and drainage function of MLVs was detected by immunohistochemical staining. Visudyne intracisternal magna injection combined with red laser photoconversion was performed to ablate MLVs. RNA-sequencing was used to obtain mRNA profiles for mechanistic investigation. RESULTS: The meningeal lymphatic drainage function was enhanced after ICH on day 14 without obvious lymphangiogenesis. Additionally, PNS further facilitated the process of drain with simultaneously inducing lymphangiogenesis. Moreover, ablation of MLVs by photoconverting of visudyne significantly blocked the benefits of neurological deficits improvement and hematoma absorption conducted by PNS. Furthermore, RNA-sequencing revealed that PNS regulated axonogenesis and inflammation, relying on the intact MLVs. In which, solute carrier family 17 member 7 (Slc17a7) and tumor necrosis factor (Tnf) were identified as bottleneck and hub nodes of the protein-protein interaction network of target genes, respectively. CONCLUSION: PNS might be effective for ICH treatment by enhancing lymphangiogenesis and the meningeal lymphatic drainage function, thereby attenuating inflammation and promoting neurological recovery. The role of PNS in regulation of MLVs was investigated for the first time. This study provides a novel insight for PNS in the medical therapy of ICH.
RESUMEN
Cavity optomechanical systems have enabled precision sensing of magnetic fields, by leveraging the optical resonance-enhanced readout and mechanical resonance-enhanced response. Previous studies have successfully achieved mass-produced and reproducible microcavity optomechanical magnetometry (MCOM) by incorporating Terfenol-D thin films into high-quality (Q) factor whispering gallery mode (WGM) microcavities. However, the sensitivity was limited to 585 pT Hz-1/2, over 20 times inferior to those using Terfenol-D particles. In this work, we propose and demonstrate a high-sensitivity and mass-produced MCOM approach by sputtering a FeGaB thin film onto a high-Q SiO2 WGM microdisk. Theoretical studies are conducted to explore the magnetic actuation constant and noise-limited sensitivity by varying the parameters of the FeGaB film and SiO2 microdisk. Multiple magnetometers with different radii are fabricated and characterized. By utilizing a microdisk with a radius of 355 µm and a thickness of 1 µm, along with a FeGaB film with a radius of 330 µm and a thickness of 1.3 µm, we have achieved a remarkable peak sensitivity of 1.68 pT Hz-1/2 at 9.52 MHz. This represents a significant improvement of over two orders of magnitude compared with previous studies employing sputtered Terfenol-D film. Notably, the magnetometer operates without a bias magnetic field, thanks to the remarkable soft magnetic properties of the FeGaB film. Furthermore, as a proof of concept, we have demonstrated the real-time measurement of a pulsed magnetic field simulating the corona current in a high-voltage transmission line using our developed magnetometer. These high-sensitivity magnetometers hold great potential for various applications, such as magnetic induction tomography and corona current monitoring.
RESUMEN
BACKGROUND: Urolithiasis combined with ESBL-producing E. coli is often difficult to control and leads to higher postoperative infection-related complications. This study was aim to explore the efficacy and necessity for early use of carbapenem antibiotics perioperatively in urolithiasis patients with urinary tract infections caused by ESBL-producing E. coli. METHODS: The study included a total of 626 patients who were separated into two groups: Group I (the ESBL-producing E. coli group) and Group II (the non-ESBL-producing E. coli group). Antibiotic susceptibility testing was performed and the two groups induced postoperative infection-related events were recorded. the efficacy of perioperative antibiotics was evaluated. RESULTS: All strains of E. coli in our research were sensitive to Carbapenems antibiotics. In addition to Carbapenems, the resistance rates of ESBL-producing E. coli to 6 other commonly used antibiotics were higher than those of non-ESBL-producing strains. Based on the preoperative antibiotic susceptibility test for the ESBL-producing E. coli group and the qSOFA score, the Carbapenems were more effective than the ß-lactamase inhibitors (p = 0.08), while for the non-ESBL-producing E. coli group, there was no difference in the treatment effects between Carbapenems, ß-lactamase inhibitors, Ceftazidime and Quinolones (p = 0.975). CONCLUSIONS: Carbapenem antibiotics significantly reduced the incidence of postoperative infection-related events compared with other types of antibiotics for ESBL-producing E. coli infections in patient with urolithiasis.
Asunto(s)
Carbapenémicos , Infecciones por Escherichia coli , Escherichia coli , Urolitiasis , beta-Lactamasas , Humanos , Carbapenémicos/uso terapéutico , Escherichia coli/efectos de los fármacos , Urolitiasis/tratamiento farmacológico , Femenino , Masculino , Persona de Mediana Edad , beta-Lactamasas/metabolismo , Infecciones por Escherichia coli/tratamiento farmacológico , Anciano , Antibacterianos/uso terapéutico , Infecciones Urinarias/tratamiento farmacológico , Atención Perioperativa , Adulto , Estudios Retrospectivos , Pruebas de Sensibilidad Microbiana , Resultado del TratamientoRESUMEN
Discovery of meningeal lymphatic vessels (LVs) in the dura mater, also known as dural LVs (dLVs) that depend on vascular endothelial growth factor C expression, has raised interest in their possible involvement in Alzheimer's disease (AD). Here we find that in the APdE9 and 5xFAD mouse models of AD, dural amyloid-ß (Aß) is confined to blood vessels and dLV morphology or function is not altered. The induction of sustained dLV atrophy or hyperplasia in the AD mice by blocking or overexpressing vascular endothelial growth factor C, impaired or improved, respectively, macromolecular cerebrospinal fluid (CSF) drainage to cervical lymph nodes. Yet, sustained manipulation of dLVs did not significantly alter the overall brain Aß plaque load. Moreover, dLV atrophy did not alter the behavioral phenotypes of the AD mice, but it improved CSF-to-blood drainage. Our results indicate that sustained dLV manipulation does not affect Aß deposition in the brain and that compensatory mechanisms promote CSF clearance.
RESUMEN
Background: Pancreatic cancer is a highly aggressive malignancy with poor prognosis, and there is an urgent need to understand its molecular mechanisms for early diagnosis and treatment. Despite surgical resection being the only effective treatment, most patients are diagnosed at an advanced stage, missing the optimal window for therapy. Identifying novel biomarkers is crucial for prognostic assessment, treatment planning, and early intervention. Ephrin A4 (EFNA4), a member of the receptor tyrosine kinase family, is involved in vascular and epithelial development via regulation of cell migration and rejection. However, the role of EFNA4 in pancreatic cancer has not been reported. Therefore, our study aimed to clarify the role of EFNA4 in pancreatic cancer through bioinformatics analysis and vitro experiments. Methods: The expression of EFNA4 and its potential value as a diagnostic and prognostic biomarker in pancreatic cancer was analyzed using data from The Cancer Genome Atlas (TCGA) and the Gene Expression Profiling Interactive Analysis (GEPIA) database. According to the expression level of EFNA4, patients were divided into high expression group and low expression group, and the correlation between overall survival (OS) and disease-free survival (DFS) with different expression levels of EFNA4 and clinical parameters were analyzed. Subsequently, reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was performed to detect EFNA4 expression. The proliferation, invasion, and cloning ability of the cells were detected via Cell Counting Kit 8 (CCK8), Transwell, and plate cloning assays, respectively. Results: EFNA4 is highly expressed in pancreatic cancer, and upregulation of EFNA4 is associated with poor prognosis. In this study, EFNA4 expression was correlated with T stage and TNM (tumor-node-metastasis) stage of pancreatic cancer, and the median survival time and progression-free survival (PFS) were worse in those with high EFNA4 expression (394 days) than in those with low expression (525 days) [hazard ratio (HR): 1.47, 95% confidence interval (CI): 1.00-2.16, P=0.047]. In addition, EFNA4 was also found to be involved in the regulation of signal pathways such as cell adhesion, cyclic AMP, insulin secretion, pancreatic secretion, and protein digestion and absorption. In vitro experiments demonstrated that EFNA4 knockdown significantly inhibited the proliferation, cloning ability, and invasiveness of the PANC-1 and SW1990 pancreatic cancer cell lines. Conclusions: The abnormal expression of EFNA4 in pancreatic cancer is associated with poor prognosis. Knockout of EFNA4 gene could significantly inhibit the proliferation and invasion of pancreatic cancer cells. Therefore, EFNA4 may be one of the molecular targets for poor prognosis of patients with pancreatic cancer.
RESUMEN
Sialadenitis and sialadenitis-induced sialopathy are typically caused by obstruction of the salivary gland ducts. Atrophy of the salivary glands in experimental animals caused by duct ligation exhibits a histopathology similar to that of salivary gland sialadenitis. Therefore, a variety of duct ligation/de-ligation models have been commonly employed to study salivary gland injury and regeneration. Duct ligation is mainly characterised by apoptosis and activation of different signaling pathways in parenchymal cells, which eventually leads to gland atrophy and progressive dysfunction. By contrast, duct de-ligation can initiate the recovery of gland structure and function by regenerating the secretory tissue. This review summarizes the animal duct ligation/de-ligation models that have been used for the examination of pathological fundamentals in salivary disorders, in order to unravel the pathological changes and underlying mechanisms involved in salivary gland injury and regeneration. These experimental models have contributed to developing effective and curative strategies for gland dysfunction and providing plausible solutions for overcoming salivary disorders.
RESUMEN
Introduction: The psychological well-being of adolescents is a global concern due to increasing societal pressures and mental health issues. Physical activity is known to enhance physical health and has potential benefits for mental health, including reducing symptoms of anxiety and depression, boosting self-esteem, and improving social skills. This narrative review explores how physical activity can serve as an intervention to help adolescents manage psychological stress and prevent mental health issues. Methods: An extensive literature search was conducted using databases such as PubMed, PsycINFO, Web of Science, and Scopus. Keywords included "adolescent mental health," "physical activity," "psychological intervention," "types of exercise," "anxiety," "depression," "self-esteem," "social skills," and "emotional regulation." Studies were included based on relevance, peer-reviewed status, and involvement of adolescent populations. Data were extracted and analyzed qualitatively, focusing on the psychological impacts of different types of physical activity. Sixty one articles were eventually included. Results and conclusion: The review identified multiple studies highlighting the positive effects of various physical activities on adolescent mental health. Aerobic exercises were found to improve mood and cognitive function, strength training reduced depressive symptoms and increased self-efficacy, team sports enhanced social skills and a sense of community, and mind-body practices like yoga and tai chi improved stress management and emotional regulation. The findings suggest that physical activity can play a significant role in promoting adolescent mental health. Implementation strategies in school and community settings, including integrating physical activity into school curricula, offering diverse activity options, training professional instructors, encouraging family and community involvement, and regular monitoring and evaluation, are recommended. Future research should address limitations such as sample diversity and long-term effects. This narrative review underscores the importance of physical activity in enhancing adolescent mental health. Effective implementation strategies and multi-sector collaboration are essential for maximizing the benefits of physical activity interventions.
RESUMEN
The signal transducer and activator of transcription 3 (STAT3) has been established as a crucial drug target in the development of antitumor agents. In this study, a series of 21 derivatives of the STAT3 inhibitor napabucasin were designed and synthesized. Through preliminary screening against tumor cell lines, SZ6 emerged as the most potent compound with half maximal inhibitory concentration (IC50) values of 46.3 nM, 66.4 nM, and 53.8 nM against HCT116, HepG2, and Hela cells respectively. Furthermore, SZ6 effectively suppressed tumor invasion and migration in HCT116 cell assays by inducing S-phase arrest and apoptosis through inhibition of Protein Kinase B (PKB/AKT) activity and induction of reactive oxygen species (ROS). The mechanism underlying SZ6's action involves inhibition of STAT3 phosphorylation, which was confirmed by western blotting analysis. Additionally, surface plasmon resonance (SPR) and cellular thermal shift assay (CETSA) demonstrated direct binding between SZ6 and STAT3. Notably, in vivo studies revealed that SZ6 significantly inhibited tumor growth without any observed organ toxicity. Collectively, these findings identify SZ6 as a promising STAT3 inhibitor for colorectal cancer treatment.
Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Factor de Transcripción STAT3 , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Apoptosis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Animales , Tiazoles/farmacología , Tiazoles/química , Tiazoles/síntesis química , Ratones , Naftoquinonas/farmacología , Naftoquinonas/síntesis química , Naftoquinonas/química , Ratones Desnudos , Ratones Endogámicos BALB C , Movimiento Celular/efectos de los fármacos , BenzofuranosRESUMEN
Despite the great potential of anti-PD-L1 antibodies for immunotherapy, their low response rate due to an immunosuppressive tumor microenvironment has hampered their application. To address this issue, we constructed a cell membrane-coated nanosystem (mB4S) to reverse an immunosuppressive microenvironment to an immuno-supportive one for strengthening the anti-tumor effect. In this system, Epirubicin (EPI) as an immunogenic cell death (ICD) inducer was coupled to a branched glycopolymer via hydrazone bonds and diABZI as a stimulator of interferon genes (STING) agonist was encapsulated into mB4S. After internalization of mB4S, EPI was acidic-responsively released to induce ICD, which was characterized by an increased level of calreticulin (CRT) exposure and enhanced ATP secretion. Meanwhile, diABZI effectively activated the STING pathway. Treatment with mB4S in combination with an anti-PD-L1 antibody elicited potent immune responses by increasing the ratio of matured dendritic cells (DCs) and CD8+ T cells, promoting cytokines secretion, up-regulating M1-like tumor-associated macrophages (TAMs) and down-regulating immunosuppressive myeloid-derived suppressor cells (MDSCs). Therefore, this nanosystem for co-delivery of an ICD inducer and a STING agonist achieved promotion of DCs maturation and CD8+ T cells infiltration, creating an immuno-supportive microenvironment, thus potentiating the therapy effect of the anti-PD-L1 antibody in both 4T1 breast and CT26 colon tumor mice.
RESUMEN
Weakly supervised temporal action localization aims to locate the temporal boundaries of action instances in untrimmed videos using video-level labels and assign them the corresponding action category. Generally, it is solved by a pipeline called "localization-by-classification", which finds the action instances by classifying video snippets. However, since this approach optimizes the video-level classification objective, the generated activation sequences often suffer interference from class-related scenes, resulting in a large number of false positives in the prediction results. Many existing works treat background as an independent category, forcing models to learn to distinguish background snippets. However, under weakly supervised conditions, the background information is fuzzy and uncertain, making this method extremely difficult. To alleviate the impact of false positives, we propose a new actionness-guided false positive suppression framework. Our method seeks to suppress false positive backgrounds without introducing the background category. Firstly, we propose a self-training actionness branch to learn class-agnostic actionness, which can minimize the interference of class-related scene information by ignoring the video labels. Secondly, we propose a false positive suppression module to mine false positive snippets and suppress them. Finally, we introduce the foreground enhancement module, which guides the model to learn the foreground with the help of the attention mechanism as well as class-agnostic actionness. We conduct extensive experiments on three benchmarks (THUMOS14, ActivityNet1.2, and ActivityNet1.3). The results demonstrate the effectiveness of our method in suppressing false positives and it achieves the state-of-the-art performance. Code: https://github.com/lizhilin-ustc/AFPS.
Asunto(s)
Grabación en Video , Humanos , Redes Neurales de la Computación , Aprendizaje Automático Supervisado , AlgoritmosRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: The repairment of myelin sheaths is crucial for mitigating neurological impairments of intracerebral hemorrhage (ICH). However, the current research on remyelination processes in ICH remains limited. A representative traditional Chinese medicine, Buyang Huanwu decoction (BYHWD), shows a promising therapeutic strategy for ICH treatment. AIM OF THE STUDY: To investigate the pro-remyelination effects of BYHWD on ICH and explore the underlying mechanisms. MATERIALS AND METHODS: The collagenase-induced mice ICH model was created for investigation. BYHWD's protective effects were assessed by behavioral tests and histological staining. Transmission electron microscopy was used for displaying the structure of myelin sheaths. The remyelination and oligodendrocyte differentiation were evaluated by the expressions of myelin proteolipid protein (PLP), myelin basic protein (MBP), MBP/TAU, Olig2/CC1, and PDGFRα/proliferating cell nuclear antigen (PCNA) through RT-qPCR and immunofluorescence. Transcriptomics integrated with disease database analysis and experiments in vivo and in vitro revealed the microRNA-related underlying mechanisms. RESULTS: Here, we reported that BYHWD promoted the neurological function of ICH mice and improved remyelination by increasing PLP, MBP, and TAU, as well as restoring myelin structure. Besides, we showed that BYHWD promoted remyelination by boosting the differentiation of PDGFRα+ oligodendrocyte precursor cells into olig2+/CC1+ oligodendrocytes. Additionally, we demonstrated that the remyelination effects of BYHWD worked by inhibiting G protein-coupled receptor 17 (GPR17). miRNA sequencing integrated with miRNA database prediction screened potential miRNAs targeting GPR17. By applying immunofluorescence, RNA in situ hybridization and dual luciferase reporter gene assay, we confirmed that BYHWD suppressed GPR17 and improved remyelination by increasing miR-760-3p. CONCLUSIONS: BYHWD improves remyelination and neurological function in ICH mice by targeting miR-760-3p to inhibit GPR17. This study may shed light on the orchestration of remyelination mechanisms after ICH, thus providing novel insights for developing innovative prescriptions with brain-protective properties.
Asunto(s)
Medicamentos Herbarios Chinos , MicroARNs , Remielinización , Ratones , Animales , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Receptores Acoplados a Proteínas G/genética , MicroARNs/genética , Proteínas del Tejido NerviosoRESUMEN
Numerous organic electrolytes additives have been reported to improve Zn anode performance in aqueous Zn metal batteries (AZMBs). However, the modification mechanism needs to be further revealed in consideration of different environments for electrolytes and electrodes during the charge-discharge process. Herein, sulfur-containing zwitter-molecule (methionine, Met) is used as an additive for ZnSO4 electrolytes. In electrolytes, Met reduces the H2O coordination number and facilitates the desolvation process by virtue of functional groups (âCOOH, âNH2, CâSâC), accelerating Zn2+ transference kinetics and decreasing the amount of active water. On electrodes, Met prefers to adsorb on Zn (002) plane and further transforms into a zincophilic protective layer containing CâSOxâC through an in situ electrochemical oxidization, suppressing H2 evolution/corrosion reactions and guiding dendrite-free Zn deposition. By using Met-containing ZnSO4 electrolytes, the Zn//Zn cells show superior cycling performance under 30 mA cm-2/30 mA h cm-2. Moreover, the full cells Zn//NH4V4O10 full cells using the modified electrolytes exhibit good performance at temperatures from -8 to 60 °C. Notably, a high energy density of 105.30 W h kg-1 can be delivered using a low N/P ratio of 1.2, showing a promising prospect of Met electrolytes additives for practical use.
RESUMEN
Understanding the competition and coexistence of flagship carnivores is key to creating strategies for their conservation in the face of global carnivore declines. Although studies exploring the dynamics and competition between tigers (Panthera tigris) and leopards (P. pardus) span decades, there is a lack of understanding regarding the factors that influence their coexistence mechanisms on a broad scale, as well as the drivers determining their exploitative and interference competition. We gathered a comprehensive list of research papers among which 36 papers explored the interspecific interactions between tigers and leopards and tested the influence of biotic and abiotic factors on the coexistence mechanisms along three dimensions using multiple response variables regression models; we also tested the influence of ecological drivers determining the exploitative or interference competition between tigers and leopards. Elevation and ungulate density were the most important predictors in regulating the coexistence mechanisms. Tigers and leopards exhibited more positive relations/higher overlaps as elevation increased in the spatial niche. In addition, they showed a higher dietary overlap in the prey-rich regions. We determined that interference competition between tigers and leopards was less frequently observed in habitats with dense tree cover and homogeneous vegetation structures. Meanwhile, studies with multiple metrics would promote the detection of interference competition. Our study provides new insight into the competitive interactions and coexistence mechanisms of tigers and leopards on a broad scale. Policy-makers and managers should pay more attention to the factors of elevation, prey abundance, and habitat structures for the conservation of tigers and leopards.
Asunto(s)
Panthera , Animales , Asia , Simpatría , ÁrbolesRESUMEN
Introduction: Angiogenesis plays an important role in the repair of urethral injury, and stem cells and their secretomes can promote angiogenesis. We obtained pediatric urethral mesenchymal stem-like cells (PU-MSLCs) in an earlier study. This project studied the pro-angiogenic effect of PU-MSLC-derived small extracellular vesicles (PUMSLC-sEVs) and the underlying mechanisms. Materials and methods: PUMSLCs and PUMSLC-sEVs were cultivated and identified. Then, biological methods such as the ethynyl deoxyuridine (EdU) incorporation assay, Cell Counting Kit-8 (CCK-8) assay, scratch wound assay, Transwell assay, and tube formation assay were used to study the effect of PUMSLC-sEVs on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). We explored whether the proangiogenic effect of PUMSLC-sEVs is related to CD73 and whether adenosine (ADO, a CD73 metabolite) promoted angiogenesis. GraphPad Prism 8 software was used for data analysis. Results: We observed that PUMSLC-sEVs significantly promoted the proliferation, migration, and tube-forming abilities of HUVECs. PUMSLC-sEVs delivered CD73 molecules to HUVECs to promote angiogenesis. The angiogenic ability of HUVECs was enhanced after treatment with extracellular ADO produced by CD73, and PUMSLC-sEVs further promoted angiogenesis by activating Adenosine Receptor A2A (A2AR). Conclusions: These observations suggest that PUMSLC-sEVs promote angiogenesis, possibly through activation of the CD73/ADO/A2AR signaling axis.
RESUMEN
Background: Streptococcus constellatus rarely causes pyopneumothorax, which is a serious state and requires a surgery. However, not every patient can tolerate surgery and individualized solutions are needed. Furthermore, many known situations are risk factors of S. constellatus infection, but S. constellatus pyopneumothorax associated with Hashimoto's thyroiditis has not been reported. Case Presentation: We present the case of a 74-year-old male with multiple encapsulated pyopneumothorax caused by S. constellatus. Given his respiratory failure, we provided two-stage percutaneous right empyema radiography for catheter drainage in the radiology interventional department instead of surgery. Moreover, an occult Hashimoto's thyroiditis was discovered in the patient, which was possibly associated with S. constellatus pyopneumothorax. Levothyroxine was administered to improve his situation. Conclusion: To our knowledge, it is the first case described in this context. We provided an alternative treatment for S. constellatus encapsulated pyopneumothorax in patient who might not tolerate surgery. We also revealed the possible relationship between S. constellatus pyopneumothorax and Hashimoto's thyroiditis.
RESUMEN
Environmental filtering is deemed to play a predominant role in regulating the abundance and distribution of animals during the urbanization process. However, the current knowledge about the effects of urbanization on the population densities of terrestrial mammals is limited. In this study, we compared two invasive mammals (dogs Canis lupus familiaris and cats Felis silvestris) and three indigenous mammals (Siberian weasels Mustela sibirica, Amur hedgehogs Erinaceus amurensis, and Tolai hares Lepus tolai) in response to urbanization using camera trap distance sampling (CTDS) in the rural-urban landscape of Tianjin, China. We used generalized additive mixed models (GAMMs) to test the specific responses of their densities to levels of urbanization. Invasive dogs (2.63 individuals/km2, 95% CI: 0.91-7.62) exhibited similar density estimations to cats (2.15 individuals/km2, 95% CI: 1.31-3.50). Amur hedgehogs were the most abundant species (6.73 individuals/km2, 95% CI: 3.15-14.38), followed by Tolai hares (2.22 individuals/km2, 95% CI: 0.87-5.68) and Siberian weasels (2.15 individuals/km2, 95% CI: 1.06-4.36). The densities of cats, Siberian weasels, and Amur hedgehogs increased with the level of urbanization. The population densities of dogs and cats were only influenced by urban-related variables, while the densities of Siberian weasels and Amur hedgehogs were influenced by both urban-related variables and nature-related variables. Our findings highlight that the CTDS is a suitable and promising method for wildlife surveys in rural-urban landscapes, and urban wildlife management needs to consider the integrated repercussions of urban- and nature-related factors, especially the critical impacts of green space habitats at finer scales.