Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
J Org Chem ; 89(18): 13768-13773, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39258625

RESUMEN

A 2-phenyl-3-difluoromethoxy-pyridinyl moiety features in potent phosphodiesterase 4D inhibitors that are considered to be candidate radiotracers for positron emission tomography if they are labeled with fluorine-18. Fluorine-18 could be installed as desired at the 3'-phenyl position with acridinium-mediated photoredox radiodeoxyfluorination in homologues bearing variously substituted 3'-aryloxy groups. However, a distal 3-difluoromethoxide (-OCHF2) group strongly competes as a leaving group, especially when an electron-deficient aryloxy group is present at position 3'. A yield of up to 50% may occur without observable 19F for 18F exchange.


Asunto(s)
Radioisótopos de Flúor , Oxidación-Reducción , Piridinas , Piridinas/química , Piridinas/síntesis química , Radioisótopos de Flúor/química , Estructura Molecular , Procesos Fotoquímicos , Halogenación , Hidrocarburos Fluorados/química , Hidrocarburos Fluorados/síntesis química
2.
Angew Chem Int Ed Engl ; : e202417474, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39323208

RESUMEN

Supramolecular assembly allows multiple chemical/bio-components integrated as one system for cascade biochemical reactions. Herein the graphitic carbon nitrides (g-C3N4) as photocatalyst trapped in a dipeptide hydrogel covering adenosine triphosphate (ATP) synthase accelerates the photophosphorylation through ATP synthesis. Self-assembled N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF) as nanofibrils to allow g-C3N4 nanosheets are embedded as a complex Fmoc-FF/g-C3N4 hydrogel. Fmoc-FF gel exhibits good electronic coupling with g-C3N4, which enables a photo-induced proton generation. The transmembrane proton gradient can be established by ATP synthase-lipid reconstituted on the surface of the Fmoc-FF/g-C3N4 hydrogel to enhance the ATP synthesis. It indicates that the Fmoc-FF/g-C3N4/ATP synthase-lipid film can possess a longer-term ATP production capability and allow repeated immersion for sustained ATP production. Such a hydrogel-supported ATP synthesis platform is achieved by a procedure at a larger scale.

3.
ACS Cent Sci ; 10(8): 1609-1618, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39220691

RESUMEN

To avoid the harsh conditions that are oftentimes adopted in direct radiofluorination reactions, conjugation of bioactive ligands with 18F-labeled prosthetic groups has become an important strategy to construct novel PET agents under mild conditions when the ligands are structurally sensitive. Prosthetic groups with [18F]fluoroarene motifs are especially appealing because of their stability in physiological environments. However, their preparation can be intricate, often requiring multistep radiosynthesis with functional group conversions to prevent the decomposition of unprotected reactive prosthetic groups during the harsh radiofluorination. Here, we report a general and simple method to generate a variety of highly reactive 18F-labeled electrophiles via one-step organophotoredox-mediated radiofluorination. The method benefits from high step-economy, reaction efficiency, functional group tolerance, and easily accessible precursors. The obtained prosthetic groups have been successfully applied in PET agent construction and subsequent imaging studies, thereby demonstrating the feasibility of this synthetic method in promoting imaging and biomedical research.

4.
Aging (Albany NY) ; 16(15): 11513-11534, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137310

RESUMEN

In the past decades, the therapeutic effect of glioblastoma (GBM) has not been significantly improved. Generous evidence indicates that S100A9 has a wide range of functions in tumors, but its exploration in GBM is less. The purpose of this study is to conduct a comprehensive bioinformatics analysis and cytological experiment on S100A9 in GBM. The expression data and clinical data of GBM samples were downloaded from the public database, and comprehensive bioinformatics analysis was performed on S100A9 in GBM using R software. Wound healing assay and transwell assay were used to detect the migration activity of cells, and colony formation assay, EdU staining, and CCK-8 assay were used to detect the proliferation activity of cells. The effect of S100A9 on the migration activity of M2 macrophages was verified by the cell co-culture method. The protein expression was detected by western blotting and immunohistochemical staining. S100A9 is an independent prognostic factor in GBM patients and is related to poor prognosis. It can be used as an effective tool to predict the response of GBM patients to immune checkpoint inhibitors (ICIs). In addition, S100A9 can promote the malignant progression of GBM and the migration of M2 macrophages. On the whole, our study highlights the potential value of S100A9 in predicting prognosis and immunotherapeutic response in GBM patients. More importantly, S100A9 may promote the malignant progress of GBM by involving in some carcinogenic pathways and remodeling the tumor microenvironment (TME).


Asunto(s)
Neoplasias Encefálicas , Calgranulina B , Movimiento Celular , Glioblastoma , Inmunoterapia , Macrófagos , Humanos , Glioblastoma/inmunología , Glioblastoma/patología , Glioblastoma/terapia , Calgranulina B/metabolismo , Calgranulina B/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Pronóstico , Inmunoterapia/métodos , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/inmunología , Línea Celular Tumoral , Progresión de la Enfermedad , Proliferación Celular , Biomarcadores de Tumor/metabolismo , Masculino , Femenino , Microambiente Tumoral/inmunología , Biología Computacional
6.
ACS Nano ; 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034461

RESUMEN

Abnormal tumor metabolism creates a complex tumor immune microenvironment that plays a dominant role in the metastasis of triple-negative breast cancer (TNBC). TNBC is insensitive to immune checkpoint blockade (ICB) therapy because of insufficient cytotoxic T lymphocyte (CTL) infiltration and a hyper-lactic acid-suppressive immune microenvironment caused by abnormal glycolysis. Herein, we propose an amplified strategy based on lactic acid regulation to reprogram the immunosuppressive tumor microenvironment (ITM) and combine it with ICB therapy to achieve enhanced antitumor immunotherapy effects. Specifically, we constructed CASN, a carrier-free photodynamic bioregulator, through the self-assembly of the photosensitizer Chlorin e6 and monocarboxylate transporter 1 (MCT1) inhibitor AZD3965. CASN exhibited a uniform structure, good stability, and drug accumulation at the tumor site. CASN-mediated photodynamic therapy following laser irradiation inhibited primary tumor growth and induced immunogenic cell death. Furthermore, CASN reduced lactic acid-mediated regulatory T cell generation and M2 tumor-associated macrophage polarization by blocking MCT1-mediated lactic acid efflux to attenuate immune suppression, inducing the recruitment and activation of CTLs. Ultimately, CASN-mediated immunopotentiation combined with ICB therapy considerably strengthened tumor immunotherapy and effectively inhibited tumor growth and metastasis of TNBC. This synergistic amplification strategy overcomes the limitations of an acidic ITM and presents a potential clinical treatment option for metastatic tumors.

7.
Sci Rep ; 14(1): 15364, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965259

RESUMEN

With the gradual shift of coal mining to the western coal mining region of China, floor heave in weakly cemented mudstone roadways has become an issue affecting the safety and efficiency of coal mine production. Additionally, different mining rates can lead to fluctuating support stresses on the roof and floor of weakly cemented mudstone roadways. Therefore, obtaining a comprehensive understanding of the mechanical properties of weakly cemented mudstone at different loading rates is conducive to improving the issue of floor heave in such roadways and provides a theoretical basis for further study. In this context, a series of uniaxial mechanical tests with concurrent acoustic emission monitoring were conducted on specimens of weakly cemented mudstone under various loading rates (0.005, 0.01, 0.05, and 0.1 mm/s). The stress‒strain and acoustic emission response curves were obtained to effectively characterize the strength, deformation, damage, macroscale instability, and crack propagation characteristics of the mudstone under the influence of loading rate effects. The research results support the following findings: (1) With increasing loading rate, the peak strength and elastic modulus of weakly cemented mudstone significantly increase, while the peak axial strain and peak radial deformation significantly decrease. (2) With increasing loading rate, the stress required to trigger the expansion of weakly cemented mudstone gradually increases, and a significant power-law relationship arises between the strain of the mudstone at the start of expansion and the loading rate. (3) With increasing loading rate, the acoustic emission ringing count of weakly cemented mudstone increases: The failure of weakly cemented mudstone changes from small-range progressive failure to sudden failure, and the failure mode transitions from shear failure to tensile‒shear composite failure. (4) The studied mudstone damage variables increase with increasing loading rate, following an approximate exponential function. The conclusions obtained in this work can provide a theoretical basis for the evolution mechanism and control of floor heave in deep roadway mining.

8.
Bioconjug Chem ; 35(8): 1160-1165, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39023912

RESUMEN

Photoredox is a powerful synthetic tool in organic chemistry and has been widely used in various fields, including nuclear medicine and molecular imaging. In particular, acridinium-based organophotoredox radiolabeling has significantly impacted the production and discovery of positron emission tomography (PET) agents. Despite their extensive use in preclinical research, no PET agents synthesized by acridinium photoredox labeling have been tested in humans. [18F]FDOPA is clinically used for tumor diagnosis and the evaluation of neuropsychiatric disorders, but its application is limited by complex synthesis methods, the need for expensive modules, and/or the high cost of consumable materials/cassettes. In this report, we integrated a photoredox labeling unit with an automated module and produced [18F]FDOPA for human study. This research not only represents the first human study of a PET agent generated by acridinium-based organophotoredox reactions but also demonstrates the safety of this novel labeling method, serving as a milestone/reference for the clinical translation of other PET agents generated by this technique in the future.


Asunto(s)
Dihidroxifenilalanina , Oxidación-Reducción , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Dihidroxifenilalanina/análogos & derivados , Dihidroxifenilalanina/química , Radiofármacos/química , Radiofármacos/síntesis química , Acridinas/química , Procesos Fotoquímicos , Radioisótopos de Flúor/química
9.
BMC Plant Biol ; 24(1): 501, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840062

RESUMEN

BACKGROUND: Peanut (Arachis hypogaea), a vital oil and food crop globally, is susceptible to web blotch which is a significant foliar disease caused by Phoma arachidicola Marasas Pauer&Boerema leading to substantial yield losses in peanut production. Calcium treatment has been found to enhance plant resistance against pathogens. RESULTS: This study investigates the impact of exogenous calcium on peanut resistance to web blotch and explores its mechanisms. Greenhouse experiments revealed that exogenous calcium treatment effectively enhanced resistance to peanut web blotch. Specifically, amino acid calcium and sugar alcohol calcium solutions demonstrated the best induced resistance effects, achieving reduction rates of 61.54% and 60% in Baisha1016, and 53.94% and 50% in Luhua11, respectively. All exogenous calcium treatments reduced malondialdehyde (MDA) and relative electrical conductivity (REC) levels in peanut leaves, mitigating pathogen-induced cell membrane damage. Exogenous calcium supplementation led to elevated hydrogen peroxide (H2O2) content and superoxide anion (O2∙-) production in peanut leaves, facilitating the accumulation of reactive oxygen species (ROS) crucial for plant defense responses. Amino acid calcium and sugar alcohol calcium treatments significantly boosted activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in peanut leaves. Activation of these antioxidant enzymes effectively scavenged excess ROS, maintaining ROS balance and mitigating cellular damage. CONCLUSIONS: In summary, exogenous calcium treatment triggered ROS production, which was subsequently eliminated by the activation of antioxidant enzymes, thereby reducing cell membrane damage and inducing defense responses against peanut web blotch.


Asunto(s)
Arachis , Calcio , Membrana Celular , Resistencia a la Enfermedad , Enfermedades de las Plantas , Especies Reactivas de Oxígeno , Arachis/metabolismo , Arachis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Ascomicetos/fisiología , Hojas de la Planta/metabolismo , Peróxido de Hidrógeno/metabolismo
10.
J Control Release ; 371: 470-483, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38849094

RESUMEN

Hypoimmunogenicity and the immunosuppressive microenvironment of ovarian cancer severely restrict the capability of immune-mediated tumor killing. Immunogenic cell death (ICD) introduces a theoretical principle for antitumor immunity by increasing antigen exposure and presentation. Despite recent research progress, the currently available ICD inducers are still very limited, and many of them can hardly induce sufficient ICD based on traditional endoplasmic reticulum (ER) stress. Accumulating evidence indicates that inducing mitochondrial stress usually shows a higher efficiency in evoking large-scale ICD than that via ER stress. Inspired by this, herein, a mitochondria-targeted polyprodrug nanoparticle (named Mito-CMPN) serves as a much superior ICD inducer, effectively inducing chemo-photodynamic therapy-caused mitochondrial stress in tumor cells. The rationally designed stimuli-responsive polyprodrugs, which can self-assemble into nanoparticles, were functionalized with rhodamine B for mitochondrial targeting, cisplatin and mitoxantrone (MTO) for synergistic chemo-immunotherapy, and MTO also serves as a photosensitizer for photodynamic immunotherapy. The effectiveness and robustness of Mito-CMPNs in reversing the immunosuppressive microenvironment is verified in both an ovarian cancer subcutaneous model and a high-grade serous ovarian cancer model. Our results support that the induction of abundant ICD by focused mitochondrial stress is a highly effective strategy to improve the therapeutic efficacy of immunosuppressive ovarian cancer.


Asunto(s)
Antineoplásicos , Mitocondrias , Nanopartículas , Neoplasias Ováricas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/terapia , Mitocondrias/efectos de los fármacos , Fotoquimioterapia/métodos , Animales , Humanos , Línea Celular Tumoral , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Profármacos/administración & dosificación , Profármacos/uso terapéutico , Profármacos/farmacología , Muerte Celular Inmunogénica/efectos de los fármacos , Ratones Endogámicos BALB C , Cisplatino/farmacología , Cisplatino/administración & dosificación , Cisplatino/uso terapéutico , Inmunoterapia/métodos , Microambiente Tumoral/efectos de los fármacos
11.
J Nucl Med ; 65(8): 1250-1256, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38871388

RESUMEN

The development of theranostic radiotracers relies on their binding to specific molecular markers of a particular disease and the use of corresponding radiopharmaceutical pairs thereafter. This study reports the use of multiamine macrocyclic moieties (MAs), as linkers or chelators, in tracers targeting the neurotensin receptor-1 (NTSR-1). The goal is to achieve elevated tumor uptake, minimal background interference, and prolonged tumor retention in NTSR-1-positive tumors. Methods: We synthesized a series of neurotensin antagonists bearing MA linkers and metal chelators. The MA unit is hypothesized to establish a strong interaction with the cell membrane, and the addition of a second chelator may enhance water solubility, consequently reducing liver uptake. Small-animal PET/CT imaging of [64Cu]Cu-DOTA-SR-3MA, [64Cu]Cu-NT-CB-NOTA, [68Ga]Ga-NT-CB-NOTA, [64Cu]Cu-NT-CB-DOTA, and [64Cu]Cu-NT-Sarcage was acquired at 1, 4, 24, and 48 h after injection using H1299 tumor models. [55Co]Co-NT-CB-NOTA was also tested in HT29 (high NTSR-1 expression) and Caco2 (low NTSR-1 expression) colorectal adenocarcinoma tumor models. Saturation binding assay and internalization of [55Co]Co-NT-CB-NOTA were used to test tracer specificity and internalization in HT29 cells. Results: In vivo PET imaging with [64Cu]Cu-NT-CB-NOTA, [68Ga]Ga-NT-CB-NOTA, and [55Co]Co-NT-CB-NOTA revealed high tumor uptake, high tumor-to-background contrast, and sustained tumor retention (≤48 h after injection) in NTSR-1-positive tumors. Tumor uptake of [64Cu]Cu-NT-CB-NOTA remained at 76.9% at 48 h after injection compared with uptake 1 h after injection in H1299 tumor models, and [55Co]Co-NT-CB-NOTA was retained at 60.2% at 24 h compared with uptake 1 h after injection in HT29 tumor models. [64Cu]Cu-NT-Sarcage also showed high tumor uptake with low background and high tumor retention 48 h after injection Conclusion: Tumor uptake and pharmacokinetic properties of NTSR-1-targeting radiopharmaceuticals were greatly improved when attached with different nitrogen-containing macrocyclic moieties. The study results suggest that NT-CB-NOTA labeled with either 64Cu/67Cu, 55Co/58mCo, or 68Ga (effect of 177Lu in tumor to be determined in future studies) and NT-Sarcage labeled with 64Cu/67Cu or 55Co/58mCo may be excellent diagnostic and therapeutic radiopharmaceuticals targeting NTSR-1-positive cancers. Also, the introduction of MA units to other ligands is warranted in future studies to test the generality of this approach.


Asunto(s)
Radioisótopos de Cobre , Radioisótopos de Galio , Compuestos Macrocíclicos , Radiofármacos , Receptores de Neurotensina , Receptores de Neurotensina/metabolismo , Receptores de Neurotensina/antagonistas & inhibidores , Animales , Ratones , Radiofármacos/farmacocinética , Radiofármacos/química , Distribución Tisular , Humanos , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacocinética , Marcaje Isotópico , Línea Celular Tumoral , Aminas/química , Medicina de Precisión , Radioquímica , Técnicas de Química Sintética , Tomografía Computarizada por Tomografía de Emisión de Positrones
12.
Autophagy ; : 1-11, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38869076

RESUMEN

Protein aggregation caused by the disruption of proteostasis will lead to cellular cytotoxicity and even cell death, which is implicated in multiple neurodegenerative diseases. The elimination of aggregated proteins is mediated by selective macroautophagy receptors, which is termed aggrephagy. However, the identity and redundancy of aggrephagy receptors in recognizing substrates remain largely unexplored. Here, we find that CCDC50, a highly expressed autophagy receptor in brain, is recruited to proteotoxic stresses-induced polyubiquitinated protein aggregates and ectopically expressed aggregation-prone proteins. CCDC50 recognizes and further clears these cytotoxic aggregates through autophagy. The ectopic expression of CCDC50 increases the tolerance to stress-induced proteotoxicity and hence improved cell survival in neuron cells, whereas CCDC50 deficiency caused accumulation of lipid deposits and polyubiquitinated protein conjugates in the brain of one-year-old mice. Our study illustrates how aggrephagy receptor CCDC50 combats proteotoxic stress for the benefit of neuronal cell survival, thus suggesting a protective role in neurotoxic proteinopathy.Abbreviations: AD: Alzheimer disease; ALS: amyotrophic lateral sclerosis; ATG5: autophagy related 5; BODIPY: boron-dipyrromethene; CASP3: caspase 3; CCDC50: coiled-coil domain containing 50; CCT2: chaperonin containing TCP1 subunit 2; CHX: cycloheximide; CQ: chloroquine; CRISPR: clustered regulatory interspaced short palindromic repeat; Cas9: CRISPR-associated system 9; DAPI: 4',6-diamidino-2-phenylindole; FK2: Anti-ubiquitinylated proteins antibody, clone FK2; FUS: FUS RNA binding protein; GFP: green fluorescent protein; HD: Huntington disease; HTT: huntingtin; KEGG: Kyoto Encyclopedia of Genes and Genomes; LDS: LIR-docking site; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPT/tau: microtubule associated protein tau; MIU: motif interacting with ubiquitin; NBR1: NBR1, autophagy cargo receptor; OPTN: optineurin; PD: Parkinson disease; PI: propidium iodide; ROS: reactive oxygen species; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; Ub: ubiquitin; UDS: UIM-docking site; UIM: ubiquitin interacting motif; UPS: ubiquitin-proteasome system.

13.
J Agric Food Chem ; 72(30): 16603-16613, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38943592

RESUMEN

Arbuscular mycorrhizal fungi (AMF) influence silicon (Si) uptake by plants, but the mechanisms remain unclear. This study investigated the mechanisms of AMF-mediated Si uptake by rice, a model Si-accumulating plant, and explored the tripartite interactions among AMF, Si, and phosphorus (P). AMF inoculation increased shoot Si content by 97% when supplied with silicic acid and by 29% with calcium silicate and upregulated expression of Si transporters Lsi1 and Lsi2 in roots. Supplying Si only to AMF hyphae increased the root Si content by 113%, indicating direct Si uptake by hyphae. Mechanisms of AMF-induced Si uptake were elucidated: 1) direct Si uptake by hyphae, 2) increased silicate dissolution, and 3) upregulation of Si transporters. Silicon application also increased AMF colonization by 28%, and the absence of interactions was observed on P uptake. Altogether, AMF support Si acquisition and Si fosters AMF colonization in rice, whereas the P uptake depends more on AMF than on Si.


Asunto(s)
Micorrizas , Oryza , Proteínas de Plantas , Raíces de Plantas , Silicio , Oryza/metabolismo , Oryza/microbiología , Micorrizas/metabolismo , Micorrizas/fisiología , Silicio/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fósforo/metabolismo , Transporte Biológico
14.
Chem Biol Interact ; 399: 111119, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936533

RESUMEN

Hepatic stellate cells (HSCs) are a major source of fibrogenic cells and play a central role in liver fibrogenesis. HSC activation depends on metabolic activation, for which it is well established that fatty acid oxidation (FAO) sustains their rapid proliferative rate. Studies have indicated that tanshinones inhibit HSC activation, however, the anti-fibrosis mechanisms of tanshinones are remain unclear. Herein, we reported that cryptotanshinone (CTS), a lipid-soluble ingredient of Salvia miltiorrhiza Bunge, exhibited the strongest inhibitory effects on HSC-LX2 proliferation and activation. CTS could induce lipocyte phenotype in mouse primary HSC and HSC-LX2. Transcriptomic sequencing and qPCR revealed that CTS regulated fatty acid metabolism and inhibited CPT1A and CPT1B expression. Target prediction suggested CTS regulates lipid metabolism by targeting STAT3. Mechanistically, the level of ATP and acetyl-CoA were reduced by the treatment of CTS, indicating that CTS could inhibit the level of FAO. Furthermore, CTS could inhibit the phosphorylation and nuclear translocation of STAT3. Additionally, CPT1A overexpression reversed the efficacy of CTS. Finally, CTS (40 mg/kg/day) attenuated CCl4-induced liver fibrosis and inhibited collagen production and HSC activation. Moreover, the results of immunofluorescence showed that α-SMA and p-STAT3 were co-located, and CTS could reduce the levels of p-STAT3 and α-SMA. In summary, CTS alleviated liver fibrosis by inhibiting the p-STAT3/CPT1A-dependent FAO both in vitro and in vivo, making it a potential candidate drug for the treatment of liver fibrosis.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Ácidos Grasos , Células Estrelladas Hepáticas , Cirrosis Hepática , Oxidación-Reducción , Fenantrenos , Factor de Transcripción STAT3 , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Fenantrenos/farmacología , Fenantrenos/química , Animales , Factor de Transcripción STAT3/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ácidos Grasos/metabolismo , Ratones , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Oxidación-Reducción/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Proliferación Celular/efectos de los fármacos , Humanos , Tetracloruro de Carbono , Línea Celular
15.
Org Lett ; 26(20): 4308-4313, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38728659

RESUMEN

In this study, we introduce a practical methodology for the synthesis of PET probes by seamlessly combining flow chemistry with photoredox radiofluorination. The clinical PET tracer 6-[18F]FDOPA was smoothly prepared in a 24.3% non-decay-corrected yield with over 99.0% radiochemical purity (RCP) and enantiomeric excess (ee), notably by a simple cartridge-based purification. The flow chemistry-enhanced photolabeling method supplies an efficient and versatile solution for the synthesis of 6-[18F]FDOPA and for more PET tracer development.


Asunto(s)
Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Radioisótopos de Flúor/química , Estructura Molecular , Radiofármacos/química , Radiofármacos/síntesis química , Oxidación-Reducción , Dihidroxifenilalanina/química , Dihidroxifenilalanina/síntesis química , Dihidroxifenilalanina/análogos & derivados , Procesos Fotoquímicos , Halogenación
16.
Eur J Nucl Med Mol Imaging ; 51(11): 3322-3333, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38771516

RESUMEN

PURPOSE: Accumulating evidence suggests that neurotensin (NTS) and neurotensin receptors (NTSRs) play key roles in lung cancer progression by triggering multiple oncogenic signaling pathways. This study aims to develop Cu-labeled neurotensin receptor 1 (NTSR1)-targeting agents with the potential for both imaging and therapeutic applications. METHOD: A series of neurotensin receptor antagonists (NRAs) with variable propylamine (PA) linker length and different chelators were synthesized, including [64Cu]Cu-CB-TE2A-iPA-NRA ([64Cu]Cu-4a-c, i = 1, 2, 3), [64Cu]Cu-NOTA-2PA-NRA ([64Cu]Cu-4d), [64Cu]Cu-DOTA-2PA-NRA ([64Cu]Cu-4e, also known as [64Cu]Cu-3BP-227), and [64Cu]Cu-DOTA-VS-2PA-NRA ([64Cu]Cu-4f). The series of small animal PET/CT were conducted in H1299 lung cancer model. The expression profile of NTSR1 was also confirmed by IHC using patient tissue samples. RESULTS: For most of the compounds studied, PET/CT showed prominent tumor uptake and high tumor-to-background contrast, but the tumor retention was strongly influenced by the chelators used. For previously reported 4e, [64Cu]Cu-labeled derivative showed initial high tumor uptake accompanied by rapid tumor washout at 24 h. The newly developed [64Cu]Cu-4d and [64Cu]Cu-4f demonstrated good tumor uptake and tumor-to-background contrast at early time points, but were less promising in tumor retention. In contrast, our lead compound [64Cu]Cu-4b demonstrated 9.57 ± 1.35, 9.44 ± 2.38 and 9.72 ± 4.89%ID/g tumor uptake at 4, 24, and 48 h p.i., respectively. Moderate liver uptake (11.97 ± 3.85, 9.80 ± 3.63, and 7.72 ± 4.68%ID/g at 4, 24, and 48 h p.i.) was observed with low uptake in most other organs. The PA linker was found to have a significant effect on drug distribution. Compared to [64Cu]Cu-4b, [64Cu]Cu-4a had a lower background, including a greatly reduced liver uptake, while the tumor uptake was only moderately reduced. Meanwhile, [64Cu]Cu-4c showed increased uptake in both the tumor and the liver. The clinical relevance of NTSR1 was also demonstrated by the elevated tumor expression in patient tissue samples. CONCLUSIONS: Through the side-by-side comparison, [64Cu]Cu-4b was identified as the lead agent for further evaluation based on its high and sustained tumor uptake and moderate liver uptake. It can not only be used to efficiently detect NTSR1 expression in lung cancer (for diagnosis, patient screening, and treatment monitoring), but also has the great potential to treat NTSR-positive lesions once chelating to the beta emitter 67Cu.


Asunto(s)
Quelantes , Radioisótopos de Cobre , Radiofármacos , Receptores de Neurotensina , Animales , Receptores de Neurotensina/metabolismo , Ratones , Quelantes/química , Radiofármacos/farmacocinética , Radiofármacos/química , Distribución Tisular , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Marcaje Isotópico
17.
Inflamm Res ; 73(6): 945-960, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38587532

RESUMEN

OBJECTIVE AND DESIGN: Mast cells (MCs), as the fastest immune responders, play a critical role in the progression of neuroinflammation-related diseases, especially in depression. Quercetin (Que) and kaempferol (Kae), as two major diet-derived flavonoids, inhibit MC activation and exhibit significant antidepressant effect due to their anti-inflammatory capacity. The study aimed to explore the mechanisms of inhibitory effect of Que and Kae on MC activation, and whether Que and Kae suppress hippocampal mast cell activation in LPS-induced depressive mice. SUBJECTS AND TREATMENT: In vitro assays, human mast cells (HMC-1) were pretreated with Que or Kae for 1 h, then stimulated by phorbol 12-myristate 13-acetate (PMA) and 2,5-di-t-butyl-1,4-benzohydroquinone (tBHQ) for 3 h or 12 h. In vivo assays, Que or Kae was administered by oral gavage once daily for 14 days and then lipopolysaccharide (LPS) intraperitoneally injection to induce depressive behaviors. METHODS: The secretion and expression of TNF-α were determined by ELISA and Western blotting. The nuclear factor of activated T cells (NFAT) transcriptional activity was measured in HMC-1 stably expressing NFAT luciferase reporter gene. Nuclear translocation of NFATc2 was detected by nuclear protein extraction and also was fluorescently detected in HMC-1 stably expressing eGFP-NFATc2. We used Ca2+ imaging to evaluate changes of store-operated calcium entry (SOCE) in HMC-1 stably expressing fluorescent Ca2+ indicator jGCamP7s. Molecular docking was used to assess interaction between the Que or Kae and calcium release-activated calcium modulator (ORAI). The  hippocampal mast cell accumulation and activation  were detected by toluidine blue staining and immunohistochemistry with ß-tryptase. RESULTS: In vitro assays of HMC-1 activated by PtBHQ (PMA and tBHQ), Que and Kae significantly decreased expression and secretion of TNF-α. Moreover, NFAT transcriptional activity and nuclear translocation of NFATc2 were remarkably inhibited by Que and Kae. In addition, the Ca2+ influx mediated by SOCE was suppressed by Que, Kae and the YM58483 (ORAI inhibitor), respectively. Importantly, the combination of YM58483 with Que or Kae had no additive effect on the inhibition of SOCE. The molecular docking also showed that Que and Kae both exhibit high binding affinities with ORAI at the same binding site as YM58483. In vivo assays, Que and Kae significantly reversed LPS-induced depression-like behaviors in mice, and inhibited hippocampal mast cell activation  in LPS-induced depressive mice. CONCLUSIONS: Our results indicated that suppression of SOCE/NFATc2 pathway-mediated by ORAI channels may be the mechanism of inhibitory effect of Que and Kae on MC activation, and also suggested Que and Kae may exert the antidepressant effect through suppressing hippocampal mast cell activation.


Asunto(s)
Depresión , Hipocampo , Quempferoles , Lipopolisacáridos , Mastocitos , Factores de Transcripción NFATC , Quercetina , Animales , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Factores de Transcripción NFATC/metabolismo , Quempferoles/farmacología , Quempferoles/uso terapéutico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Masculino , Quercetina/farmacología , Quercetina/uso terapéutico , Depresión/inducido químicamente , Depresión/tratamiento farmacológico , Depresión/metabolismo , Línea Celular , Transducción de Señal/efectos de los fármacos , Ratones , Calcio/metabolismo , Canales de Calcio/metabolismo , Ratones Endogámicos C57BL , Antidepresivos/farmacología , Antidepresivos/uso terapéutico
18.
Aging (Albany NY) ; 16(6): 5601-5617, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38535989

RESUMEN

RNA modifications have been substantiated to regulate the majority of physiological activities in the organism, including the metabolism of reactive oxygen species (ROS), which plays an important role in cells. As for the effect of RNA modification genes on ROS metabolism in glioblastoma (GBM), it has not been studied yet. Therefore, this study aims to screen the RNA modification genes that are most related to ROS metabolism and explore their effects on the biological behavior of GBM in vitro. Here, an association between WTAP and ROS metabolism was identified by bioinformatics analysis, and WTAP was highly expressed in GBM tissue compared with normal brain tissue, which was confirmed by western blotting and immunohistochemical staining. When using a ROS inducer to stimulate GBM cells in the WTAP overexpression group, the ROS level increased more significantly and the expression levels of superoxide dismutase 1 (SOD1) and catalase (CAT) also increased. Next, colony formation assay, wound healing assay, and transwell assay were performed to investigate the proliferation, migration, and invasion of GBM cells. The results showed that WTAP, as an oncogene, promoted the malignant progression of GBM cells. Functional enrichment analysis predicted that WTAP was involved in the regulation of tumor/immune-related functional pathways. Western blotting was used to identify that WTAP had a regulatory effect on the phosphorylation of PI3K/Akt signaling. Finally, based on functional enrichment analysis, we further performed immune-related analysis on WTAP. In conclusion, this study analyzed WTAP from three aspects, which provided new ideas for the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Especies Reactivas de Oxígeno/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Microambiente Tumoral/genética , Proliferación Celular/genética , Neoplasias Encefálicas/patología , ARN , Línea Celular Tumoral , Factores de Empalme de ARN , Proteínas de Ciclo Celular/metabolismo
19.
J Am Chem Soc ; 146(10): 6773-6783, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38421958

RESUMEN

The past decade has seen a remarkable growth in the number of bioconjugation techniques in chemistry, biology, material science, and biomedical fields. A core design element in bioconjugation technology is a chemical reaction that can form a covalent bond between the protein of interest and the labeling reagent. Achieving chemoselective protein bioconjugation in aqueous media is challenging, especially for generally less reactive amino acid residues, such as tryptophan. We present here the development of tryptophan-selective bioconjugation methods through ultrafast Lewis acid-catalyzed reactions in hexafluoroisopropanol (HFIP). Structure-reactivity relationship studies have revealed a combination of thiophene and ethanol moieties to give a suitable labeling reagent for this bioconjugation process, which enables modification of peptides and proteins in an extremely rapid reaction unencumbered by noticeable side reactions. The capability of the labeling method also facilitated radiofluorination application as well as antibody functionalization. Enhancement of an α-helix by HFIP leads to its compatibility with a certain protein, and this report also demonstrates a further stabilization strategy achieved by the addition of an ionic liquid to the HFIP medium. The nonaqueous bioconjugation approaches allow access to numerous chemical reactions that are unavailable in traditional aqueous processes and will further advance the chemistry of proteins.


Asunto(s)
Hidrocarburos Fluorados , Propanoles , Proteínas , Triptófano , Proteínas/química , Péptidos , Catálisis
20.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38404917

RESUMEN

Sex pheromone recognition is essential for mating in many insects and plays a major role in maintaining reproductive barriers. A previous study from our lab reported the evolutionary history of the pheromone receptor OR5 in Spodoptera moths. Using heterologous expression in Xenopus oocytes and site-directed mutagenesis, we found that eight amino acid substitutions were sufficient to recapitulate the evolution from an ancestral broadly-tuned to a highly specific receptor. Here, we confirmed this result using expression in Drosophila olfactory neurons. This further confirmed that multiple amino acid changes explain the shift in tuning breadth of Spodoptera OR5 during evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...