Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
1.
Biomed Pharmacother ; 178: 117184, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142252

RESUMEN

BACKGROUND: A two-way relationship exists between type 2 diabetes (T2DM) and human nonalcoholic steatohepatitis (NASH). Several diabetic NASH models have the disadvantages of long cycles or inconsistent with the actual incidence of human disease, which would be costly and time-consuming to investigate disease pathogenesis and develop drugs. Therefore, there is an urgent need to establish a diabetic NASH mouse model. METHODS: The combination between Fructose-palmitate-cholesterol diet (FPC) and Streptozotocin (STZ) (FPC+STZ) was used to construct diabetic NASH mouse model. The in vivo effects of silencing acid-sensitive Ion Channel 1a (ASIC1a) were examined with an adeno-associated virus 9 (AAV9) carrying ASIC1a short hairpin RNA (shRNA) in FPC+STZ model. RESULTS: The mice fed with FPC for 12 weeks had insulin resistance, hyperinsulinemia, lipid accumulation, and increased hepatic levels of inflammatory factors. However, it still did not develop remarkable liver fibrosis. Most interestingly, noticeable fibrotic scars were observed in the liver of mice from FPC+STZ group. Furthermore, insulin therapy significantly ameliorated FPC+STZ-induced NASH-related liver fibrosis, indicating that hyperglycemia is of great significance in NASH development and progression. Importantly, ASIC1a was found to be involved in the pathogenesis of diabetic NASH as demonstrated that silencing ASIC1a in HSCs significantly ameliorated FPC+STZ-induced NASH fibrosis. Mechanistically, ASIC1a interacted with Poly Adp-adenosine ribose polymerase (PARP1) to promote HSC activation by inducing autophagy. CONCLUSION: A FPC diet combined with an injection of STZ induces a diabetic NASH mouse model in a shorter period. Targeting ASIC1a may provide a novel therapeutic target for the treatment of diabetic NASH.

2.
Genomics ; 116(5): 110918, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147333

RESUMEN

Ischemia-reperfusion injury (IRI) is a cumulation of pathophysiological processes that involves cell and organelle damage upon blood flow constraint and subsequent restoration. However, studies on overall immune infiltration and ferroptosis in liver ischemia-reperfusion injury (LIRI) are limited. This study explored immune cell infiltration and ferroptosis in LIRI using bioinformatics and experimental validation. The GSE151648 dataset, including 40 matched pairs of pre- and post- transplant liver samples was downloaded for bioinformatic analysis. Eleven hub genes were identified by overlapping differentially expressed genes (DEGs), iron genes, and genes identified through weighted gene co-expression network analysis (WGCNA). Subsequently, the pathway enrichment, transcription factor-target, microRNA-mRNA and protein-protein interaction networks were investigated. The diagnostic model was established by logistic regression, which was validated in the GSE23649 and GSE100155 datasets and verified using cytological experiments. Moreover, several drugs targeting these genes were found in DrugBank, providing a more effective treatment for LIRI. In addition, the expression of 11 hub genes was validated using quantitative real-time polymerase chain reaction (qRT-PCR) in liver transplantation samples and animal models. The expression of the 11 hub genes increased in LIRI compared with the control. Five genes were significantly enriched in six biological process terms, six genes showed high enrichment for LIRI-related signaling pathways. There were 56 relevant transcriptional factors and two central modules in the protein-protein interaction network. Further immune infiltration analysis indicated that immune cells including neutrophils and natural killer cells were differentially accumulated in the pre- and post-transplant groups, and this was accompanied by changes in immune-related factors. Finally, 10 targeted drugs were screened. Through bioinformatics and further experimental verification, we identified hub genes related to ferroptosis that could be used as potential targets to alleviate LIRI.

3.
Gene ; 930: 148825, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39116957

RESUMEN

Light is a vital environmental factor that promotes the growth and development of edible fungi mycelium. Under white light, the mycelium color of Sanghuangporus vaninii shifts during its growth stages. To investigate the impact of visible light on mycelial morphogenesis, a comparative transcriptomic analysis was conducted. This analysis revealed the molecular processes that underpin mycelial growth and development in S. vaninii when cultured in both darkness and light conditions. From the analysis, 13,643 genes were aligned using Illumina raw reads. Of these, 596 genes exhibited significant expression changes under white light exposure. Specifically, 226 genes were upregulated and 370 downregulated, spanning 55 different metabolic pathways. We further classified differentially expressed genes (DEGs), these genes play roles in photomorphogenesis, signal transduction, carbohydrate metabolism, and melanin production, among other processes. Some are also implicated in cell cycle regulation and the differential expression of respiratory functions. The validation of the differentially expressed transcripts using qRT-PCR showed complete agreement with RNA-Seq data for 9 transcripts. Meanwhile, the light had an inhibitory effect on the bioactive components in S. vaninii. These findings offer valuable insights into the transcriptional shifts and molecular mechanisms driving the color change in S. vaninii under light exposure, providing a basis for further research into mechanisms of light-response regulation.

4.
Commun Biol ; 7(1): 1021, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164404

RESUMEN

Paternal genome elimination (PGE) is an intriguing but poorly understood reproductive strategy in which females are typically diploid, but males lose paternal genomes. Paternal genome heterochromatin (PGH) occurs in arthropods with germline PGE, such as the mealybug, coffee borer beetles, and booklice. Here, we present evidence that PGH initially occurs during early embryo development at around 15 h post-mating (hpm) in the cotton mealybug, Phenacoccus solenopsis Tinsley. Transcriptome analysis followed by qPCR validation indicated that six histone lysine methyltransferase (KMT) genes are predominantly expressed in adult females. We knocked down these five genes through dsRNA microinjection. We found that downregulation of two KMT genes, PsEZH2-X1 and PsEHMT1, resulted in a decrease of heterochromatin-related methylations, including H3K27me1, H3K27me3, and H3K9me3 in the ovaries, fewer PGH male embryos, and reduced male offspring. For further confirmation, we obtained two strains of transgenic tobacco highly expressing dsRNA targeting PsEZH2-X1 and PsEHMT1, respectively. Similarly, fewer PGH embryos and fewer male offspring were observed when feeding on these transgenic tobacco plants. Overall, we present evidence that PsEZH2-X1 and PsEHMT1 have essential roles in male embryo survival by regulating PGH formation in cotton mealybugs.


Asunto(s)
Desarrollo Embrionario , Hemípteros , N-Metiltransferasa de Histona-Lisina , Animales , Masculino , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Femenino , Desarrollo Embrionario/genética , Hemípteros/genética , Hemípteros/enzimología , Hemípteros/embriología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Plantas Modificadas Genéticamente/genética
5.
Clin Transl Oncol ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097545

RESUMEN

PURPOSE: The tonsoku-like DNA repair protein (TONSL) encoded by the TONSL gene, located on chromosome 8q24.3, is crucial for repairing DNA double-strand breaks through homologous recombination. However, TONSL overexpression in lung adenocarcinoma (LUAD) promotes tumor development, leading to a poor prognosis. METHODS: TONSL was verified as a reliable prognostic marker for LUAD using bioinformatics, and clinical features related to LUAD prognosis were screened from the TCGA database to establish the relationship between risk factors and TONSL expression. In addition, TONSL expression in normal and LUAD tissues was verified using real-time quantitative polymerase chain reaction and immunohistochemistry. To elucidate the possible functions of TONSL, TONSL-related differentially expressed genes were screened, and functional enrichment analysis was performed. Subsequently, siRNA was used to knock down TONSL expression in lung cancer cells for cytobehavioral experiments. The effects of TONSL expression on tumor immune escape were analyzed using the ESTIMATE algorithm and tumor immune-infiltration analysis. In addition, the half-maximal inhibitory concentration of LUAD with varying TONSL expression levels in response to first-line chemotherapeutic drugs and epidermal growth factor receptor-tyrosine kinase inhibitors was analyzed for drug sensitivity. RESULTS: Up-regulation of TONSL in LUAD promotes the proliferation, migration, and invasion of lung cancer cells, thereby contributing to a poor prognosis. Furthermore, TONSL overexpression promotes immune escape and drug sensitivity in LUAD. CONCLUSION: TONSL serves as a reliable prognostic marker for LUAD, and its up-regulation is associated with increased immune escape and drug sensitivity. These findings suggest that TONSL holds potential as a novel therapeutic target for LUAD.

6.
Int J Cardiol ; 414: 132384, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032578

RESUMEN

BACKGROUND: Chronic total occlusions (CTO) occur in about 20% of patients referred for coronary angiography, and right coronary artery (RCA) CTO has been reported in 38-50% of the entire CTO population. Limited data on angiographic and procedural characteristics of RCA-CTO and the risk of adverse cardiac events asks for a detailed study. METHODS: From 2010 to 2013, patients with attempted revascularization of at least one CTO lesion were included and followed up to 5 years after PCI. Eligible patients are assigned to RCA-CTO and non-RCA-CTO groups based on their target vessels. The primary endpoint was major adverse cardiovascular events (MACEs; a composite of all-cause death, myocardial infarction (MI) or rehospitalization for heart failure), and secondary endpoints were cardiac death, target lesion revascularization (TLR) and target vessel revascularization (TVR). RESULTS: The present study included 2659 eligible patients, among which 1285 patients were assigned to the RCA-CTO group, whereas 1374 patients were assigned to the non-RCA-CTO group. Lesions in RCA had longer lesion length, higher J-CTO score, higher rates of severe vessel tortuosity, a higher percentage of Rentrop grade 2-3, and more likely to be re-try lesion than those in LAD or LCX (all P < 0.01). CTO lesions in RCA reached less successful recanalization and post-procedural TIMI 3 flow (all <0.01). Multivariate Cox analysis revealed that RCA-CTO was not associated with primary outcome MACEs. Besides MACEs, RCA-CTO was also not associated with cardiac death, but was significantly associated with TLR and TVR (adjusted HR: 1.37 [95% CI:1.07-1.76], P = 0.01; adjusted HR: 1.43 [95% CI:1.13-1.82], P = 0.003). CONCLUSION: RCA-CTO lesions, which had more complex angiographic features, independently contributed to TLR and TVR but not to MACEs or cardiac death in the 5 years of follow-up.

7.
Carcinogenesis ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082894

RESUMEN

Osteosarcoma (OS) is a bone malignant tumor affecting children, adolescents and young adults. Currently, osteosarcoma is treated with chemotherapy regimens established over 40 years ago. The investigation of novel therapeutic strategies for the treatment of osteosarcoma remains an important clinical need. Cyclin-dependent kinases (CDKs) have been considered promising molecular targets in cancer therapy. Among these, CDK12 has been shown to play a crucial role in the pathogenesis of malignancies, but its clinical significance and biological mechanisms in osteosarcoma remain unclear. In the present study, we aim to determine the expression and function of CDK12, and evaluate its prognostic and therapeutic value in metastatic osteosarcoma. We found that overexpression of CDK12 was associated with high tumor grade, tumor progression and reduced patient survival. Underlying mechanism revealed that knockdown of CDK12 expression with siRNA or functional inhibition with the CDK12-targeting agent THZ531 effectively exhibited time- and dose-dependent cytotoxicity. Downregulation of CDK12 paused transcription by reducing RNAP II phosphorylation, interfered with DNA damage repair with increased γH2AX, and decreased cell proliferation through the PI3K-AKT pathway. This was accompanied by the promotion of apoptosis, as evidenced by enhanced Bax expression and reduced Bcl-xL expression. Furthermore, the CDK12 selective inhibitor THZ531 also hindered ex vivo 3D spheroid formation, growth of in vitro 2D cell colony, and prevented cell mobility. Our findings highlight the clinical importance of CDK12 as a potentially valuable prognostic biomarker and therapeutic target in metastatic osteosarcoma.

8.
J Am Chem Soc ; 146(28): 18841-18847, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38975938

RESUMEN

An asymmetric intramolecular spiro-amination to high steric hindering α-C-H bond of 1,3-dicarbonyl via nitrene transfer using inactive aryl azides has been carried out by developing a novel Cp*Ir(III)-SPDO (spiro-pyrrolidine oxazoline) catalyst, thereby enabling the first successful construction of structurally rigid spiro-quaternary indolinone cores with moderate to high yields and excellent enantioselectivities. DFT computations support the presence of double bridging H-F bonds between [SbF6]- and both the ligand and substrate, which favors the plane-differentiation of the enol π-bond for nitrenoid attacking. These findings open up numerous opportunities for the development of new asymmetric nitrene transfer systems.

9.
Front Microbiol ; 15: 1387643, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962136

RESUMEN

Pleurotus ostreatus is one of the most consumed mushroom species, as it serves as a high-quality food, favors a rich secondary metabolism, and has remarkable adaptability to the environment and predators. In this study, we investigated the function of two key reactive oxygen species producing enzyme NADPH oxidase (PoNoxA and PoNoxB) in P. ostreatus hyphae growth, metabolite production, signaling pathway activation, and immune responses to different stresses. Characterization of the Nox mutants showed that PoNoxB played an important role in the hyphal formation of the multicellular structure, while PoNoxA regulated apical dominance. The ability of P. ostreatus to tolerate a series of abiotic stress conditions (e.g., osmotic, oxidative, membrane, and cell-wall stresses) and mechanical damage repair was enhanced with PoNoxA over-expression. PoNoxB had a greater responsibility in regulating the polysaccharide composition of the cell wall and methyl jasmonate and gibberellin GA1 biosynthesis, and improved mushroom resistance against Tyrophagus putrescentiae. Moreover, mutants were involved in the jasmonate and GA signaling pathway, and toxic protein defense metabolite production. Our findings shed light on how the oyster mushroom senses stress signals and responds to adverse environments by the complex regulators of Noxs.

10.
J Am Chem Soc ; 146(31): 22093-22102, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39054926

RESUMEN

Here we introduce amphiphilic star polymers as versatile protein mimics capable of approximating the activity of certain native proteins. Our study focuses on designing a synthetic polymer capable of replicating the biological activity of TRAIL, a promising anticancer protein that shows very poor circulation half-life. Successful protein mimicry requires precise control over the presentation of receptor-binding peptides from the periphery of the polymer scaffold while maintaining enough flexibility for protein-peptide binding. We show that this can be achieved by building hydrophobic blocks into the core of a star-shaped polymer, which drives unimolecular collapse in water. By screening a library of diblock copolymer stars, we were able to design structures with IC50's of ∼4 nM against a colon cancer cell line (COLO205), closely approximating the activity of the native TRAIL protein. This finding highlights the broad potential for simple synthetic polymers to mimic the biological activity of complex proteins.


Asunto(s)
Polímeros , Humanos , Polímeros/química , Polímeros/farmacología , Línea Celular Tumoral , Ligando Inductor de Apoptosis Relacionado con TNF/química , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Imitación Molecular , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología
12.
BMC Musculoskelet Disord ; 25(1): 490, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914997

RESUMEN

BACKGROUND: Ankylosing spondylitis (AS) with radiographic damage is more prevalent in men than in women. IL-17, which is mainly secreted from peripheral blood mononuclear cells (PBMCs), plays an important role in the development of AS. Its expression is different between male and female. However, it is still unclear whether sex dimorphism of IL-17 contribute to sex differences in AS. METHODS: GSE221786, GSE73754, GSE25101, GSE181364 and GSE205812 datasets were collected from the Gene Expression Omnibus (GEO) database. Differential expressed genes (DEGs) were analyzed with the Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) methods. CIBERSORTx and EcoTyper algorithms were used for immune infiltration analyses. Machine learning based on the XGBoost algorithm model was used to identify the impact of DEGs. The Connectivity Map (CMAP) database was used as a drug discovery tool for exploring potential drugs based on the DEGs. RESULTS: According to immune infiltration analyses, T cells accounted for the largest proportion of IL-17-secreting PBMCs, and KEGG analyses suggested an enhanced activation of mast cells among male AS patients, whereas the expression of TNF was higher in female AS patients. Other signaling pathways, including those involving metastasis-associated 1 family member 3 (MAT3) or proteasome, were found to be more activated in male AS patients. Regarding metabolic patterns, oxidative phosphorylation pathways and lipid oxidation were significantly upregulated in male AS patients. In XGBoost algorithm model, DEGs including METRN and TMC4 played important roles in the disease process. we integrated the CMAP database for systematic analyses of polypharmacology and drug repurposing, which indicated that atorvastatin, famciclocir, ATN-161 and taselisib may be applicable to the treatment of AS. CONCLUSIONS: We analyzed the sex dimorphism of IL-17-secreting PBMCs in AS. The results showed that mast cell activation was stronger in males, while the expression of TNF was higher in females. In addition, through machine learning and the CMAP database, we found that genes such as METRN and TMC4 may promote the development of AS, and drugs such as atorvastatin potentially could be used for AS treatment.


Asunto(s)
Biología Computacional , Interleucina-17 , Leucocitos Mononucleares , Aprendizaje Automático , Caracteres Sexuales , Espondilitis Anquilosante , Femenino , Humanos , Masculino , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Interleucina-17/metabolismo , Interleucina-17/genética , Leucocitos Mononucleares/metabolismo , Espondilitis Anquilosante/genética , Espondilitis Anquilosante/inmunología , Espondilitis Anquilosante/metabolismo
13.
Org Lett ; 26(27): 5657-5663, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38941517

RESUMEN

A protocol for the electrooxidative [3+2] annulation to generate indolo[2,3-b]indoles in an undivided cell is reported. It exhibits good yields with excellent regioselectivities and tolerates various functional groups without external chemical oxidants. Cyclic voltammetry and density functional theory calculations indicate that the [3+2] annulation is initiated by the simultaneous anodic oxidation of indole and aniline derivatives, and the step to determine the rate relies on the combination of radical cations.

14.
Environ Sci Technol ; 58(27): 12201-12211, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38934498

RESUMEN

The elevation of the low-temperature oxidation activity for Pt/CeO2 catalysts is challenging to meet the increasingly stringent requirements for effectively eliminating carbon monoxide (CO) from automobile exhaust. Although reducing activation is a facile strategy for boosting reactivity, past research has mainly concentrated on applying H2 as the reductant, ignoring the reduction capabilities of CO itself, a prevalent component of automobile exhaust. Herein, atomically dispersed Pt/CeO2 was fabricated and activated by CO, which could lower the 90% conversion temperature (T90) by 256 °C and achieve a 20-fold higher CO consumption rate at 200 °C. The activated Pt/CeO2 catalysts showed exceptional catalytic oxidation activity and robust hydrothermal stability under the simulated working conditions for gasoline or diesel exhausts. Characterization results illustrated that the CO activation triggered the formation of a large portion of Pt0 terrace sites, acting as inherent active sites for CO oxidation. Besides, CO activation weakened the Pt-O-Ce bond strength to generate a surface oxygen vacancy (Vo). It served as the oxygen reservoir to store the dissociated oxygen and convert it into active dioxygen intermediates. Conversely, H2 activation failed to stimulate Vo, but triggered a deactivating transformation of the Pt nanocluster into inactive PtxOy in the presence of oxygen. The present work offers coherent insight into the upsurging effect of CO activation on Pt/CeO2, aiming to set up a valuable avenue in elevating the efficiency of eliminating CO, C3H6, and NH3 from automobile exhaust.


Asunto(s)
Monóxido de Carbono , Oxidación-Reducción , Catálisis , Monóxido de Carbono/química , Emisiones de Vehículos , Platino (Metal)/química , Cerio/química
15.
Exp Mol Med ; 56(6): 1412-1425, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38825640

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common fatal cancers worldwide, and the identification of novel treatment targets and prognostic biomarkers is urgently needed because of its unsatisfactory prognosis. Regulator of G-protein signaling 19 (RGS19) is a multifunctional protein that regulates the progression of various cancers. However, the specific function of RGS19 in HCC remains unclear. The expression of RGS19 was determined in clinical HCC samples. Functional and molecular biology experiments involving RGS19 were performed to explore the potential mechanisms of RGS19 in HCC. The results showed that the expression of RGS19 is upregulated in HCC tissues and is significantly associated with poor prognosis in HCC patients. RGS19 promotes the proliferation and metastasis of HCC cells in vitro and in vivo. Mechanistically, RGS19, via its RGS domain, stabilizes the MYH9 protein by directly inhibiting the interaction of MYH9 with STUB1, which has been identified as an E3 ligase of MYH9. Moreover, RGS19 activates ß-catenin/c-Myc signaling via MYH9, and RGS19 is also a transcriptional target gene of c-Myc. A positive feedback loop formed by RGS19, MYH9, and the ß-catenin/c-Myc axis was found in HCC. In conclusion, our research revealed that competition between RGS19 and STUB1 is a critical mechanism of MYH9 regulation and that the RGS19/MYH9/ß-catenin/c-Myc feedback loop may represent a promising strategy for HCC therapy.


Asunto(s)
Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Cadenas Pesadas de Miosina , Proteínas Proto-Oncogénicas c-myc , Proteínas RGS , beta Catenina , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , beta Catenina/metabolismo , Proteínas RGS/metabolismo , Proteínas RGS/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Línea Celular Tumoral , Ratones , Transducción de Señal , Proliferación Celular , Masculino , Pronóstico , Retroalimentación Fisiológica , Femenino
18.
Oncol Lett ; 28(2): 376, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38910901

RESUMEN

Lung adenocarcinoma (LUAD) presents a significant global health challenge owing to its poor prognosis and high mortality rates. Despite its involvement in the initiation and progression of a number of cancer types, the understanding of the precise impact of MIS18 kinetochore protein A (MIS18A) on LUAD remains incomplete. In the present study, the role of MIS18A in LUAD was investigated by analyzing the genomic and clinical data from multiple public datasets. The expression of MIS18A was validated using reverse transcription-quantitative polymerase chain reaction, and in vitro experiments involving small interfering RNA-induced downregulation of MIS18A in lung cancer cells were conducted to further explore its impact. These findings revealed that elevated MIS18A expression in LUAD was associated with advanced clinical features and poor prognosis. Functional analysis also revealed the role of MIS18A in regulating the cell cycle and immune-related pathways. Moreover, MIS18A altered the immune microenvironment in LUAD, influencing its response to immunotherapy and drug sensitivity. The results of the in vitro experiments indicated that suppression of MIS18A expression reduced the proliferative and migratory capacities of LUAD cells. In summary, MIS18A possesses potential as a biomarker and may serve as a possible therapeutic target for LUAD, with significant implications for tumor progression by influencing both cell cycle dynamics and immune infiltration.

19.
Biomed Pharmacother ; 177: 116898, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878635

RESUMEN

Liver disease affects millions of people in the world, and China has the highest prevalence of liver disease in the world. Small ubiquitin-related modifier (SUMO) modification is a highly conserved post-translational modification of proteins. They are widely expressed in a variety of tissues, including the heart, liver, kidney and lung. SUMOylation of protein plays a key role in the occurrence and development of liver disease. Therefore, this study reviewed the effects of SUMO protein on non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), viral hepatitis, hepatic fibrosis (HF), hepatocellular carcinoma (HCC), and other liver diseases to provide novel strategies for targeted treatment of liver disease.


Asunto(s)
Hepatopatías , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina , Sumoilación , Humanos , Animales , Hepatopatías/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Procesamiento Proteico-Postraduccional
20.
Public Health Genomics ; 27(1): 74-82, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38735285

RESUMEN

INTRODUCTION: Given that PD-L1 is a crucial immune checkpoint in regulating T-cell responses, the aim of this study was to explore the impact of PD-L1 gene polymorphisms and the interaction with cooking with solid fuel on susceptibility to tuberculosis (TB) in Chinese Han populations. METHODS: A total of 503 TB patients and 494 healthy controls were enrolled in this case-control study. Mass spectrometry technology was applied to genotype rs2297136 and rs4143815 of PD-L1 genes. The associations between single nucleotide polymorphism (SNPs) and TB were assessed using unconditional logistic regression analysis. Marginal structural linear odds models were used to estimate the gene-environment interactions. RESULTS: Compared with genotype CC, genotypes GG and CG+GG at rs4143815 locus were significantly associated with susceptibility to TB (OR: 3.074 and 1.506, respectively, p < 0.05). However, no statistical association was found between rs2297136 SNP and TB risk. Moreover, the relative excess risk of interaction between rs4143815 of the PD-L1 gene and cooking with solid fuel was 2.365 (95% CI: 1.922-2.809), suggesting positive interactions with TB susceptibility. CONCLUSION: The rs4143815 polymorphism of the PD-L1 gene was associated with susceptibility to TB in Chinese Han populations. There were significantly positive interactions between rs4143815 and cooking with solid fuel.


Asunto(s)
Antígeno B7-H1 , Culinaria , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Tuberculosis , Humanos , Masculino , Femenino , Antígeno B7-H1/genética , Persona de Mediana Edad , Tuberculosis/genética , Estudios de Casos y Controles , Adulto , China/epidemiología , Interacción Gen-Ambiente , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...