Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39360010

RESUMEN

The burgeoning demand for materials with tunable photoluminescence properties for applications has necessitated the exploration of novel luminescent materials. This study presents the synthesis and characterization of a novel 0D organic-inorganic hybrid metal halide (OIHMH) single crystal, C6H14N2CdBr4, which exhibits intriguing luminescent properties upon Mn2+ doping. The introduction of single Mn2+ ions results in a dual-emission, with the unexpected emergence of a red emission peak at 627 nm, in addition to the conventional tetrahedral green emission at 525 nm. This dual-emission is attributed to the distinct inter-tetrahedral distances within the crystal structure of C6H14N2CdBr4 with varying distances between [CdBr4]2- tetrahedra, influencing the spatial distribution and interaction of the [MnBr4]2- tetrahedra. Electron paramagnetic resonance (EPR) spectroscopy and theoretical calculations reveal the 627 nm and 525 nm emissions are attributed to the d-d transition of magnetic coupled Mn2+-Mn2+ pairs and isolated Mn2+ ions, respectively. This study not only advances the understanding of the luminescence mechanisms of Mn2+ but also paves the way for the development of tunable luminescent materials.

2.
Angew Chem Int Ed Engl ; : e202411136, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147700

RESUMEN

Low dimensional organic-inorganic hybrid metal halide materials have attracted extensive attention due to their superior optoelectronic properties. However, low photoluminescence quantum yields (PLQYs) caused by parity-forbidden transition hinder their further application in optoelectronic devices. Herein, a novel yellow-emitting PMA4Na(In,Sb)Cl8 (C7H10N+, PMA+) low-dimensional OIMHs single crystal with a PLQY as high as 88% was successfully designed and synthesized, originating from the fact that the doping of Sb3+ effectively relaxes the parity-forbidden transition by strong spin-orbit (SO) coupling and Jahn-Teller (JT) interaction. The as-prepared crystal shows an efficient dual emission peaking 495 and 560 nm at low temperature, which are ascribed to different levels of 3P1 → 1S0 transitions of Sb3+ in [SbCl6]3- octahedral caused by JT deformation. Moreover, wide-range luminescence tailoring from cyan to orange can be achieved through adjusting excitation energy and temperature because of flexible [SbCl6]3- octahedral in the PNIC lattice. Based on a relative stiff lattice environment, the 560 nm yellow emission under 350 nm light excitation exhibits abnormal anti-thermal quenching from 8 to 400 K owing to the suppression of non-radiative transition. The multimode luminescence regulation enriches PMA4Na(In,Sb)Cl8 great potential in the field of optoelectronics such as temperature sensing,  low temperature anti-counterfeiting and WLED applications.

3.
Inorg Chem ; 63(7): 3525-3534, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38324525

RESUMEN

The quest for efficient and tunable luminescent materials has been at the forefront of research in the fields of chemistry and materials science. This work delves into the investigation of the luminescence properties of Er3+ ions triggered by 1% Te4+ in the environmentally benign perovskite Cs2NaYbCl6 (CNYC) crystals, aiming to enhance their efficiency and tune the luminescence color. The ratio of the green (2H11/2, 4S3/2-4I15/2) to red (4F9/2-4I15/2) emissions of Er3+ can be freely tunable by varying the concentration of Er3+ and producing the defects induced by codoping Te4+. The calculations reveal that the multiexcitonic excitations of Er3+ stem from f-f (4I15/2-4G11/2, 2H9/2) rather than d-f transitions. The broadened excitation, tuning of color, and enhancement of efficiency achieved in the luminescence perovskite crystals Cs2NaYbCl6:Te4+, Er3+ (CNYC:Te4+,Er3+) presents promising opportunities for the development of advanced optoelectronic devices with superior performance. Moreover, our investigation demonstrates the tunable luminescence response of CNYC:Er3+ to temperature variations, offering potential applications in temperature sensing.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37889610

RESUMEN

All-inorganic halide perovskites (AIHPs) have emerged as highly promising optoelectronic materials owing to their remarkable properties, such as high-optical absorption coefficients, photoluminescence efficiencies, and dopant tolerance. Here, we investigate the AIHPs K4CdCl6:Sb3+,Mn2+ that demonstrate hue-tunable white-light emission with an exceptional photoluminescence quantum yield of up to 97%. Through a detailed investigation, we reveal that efficient energy transfer from Sb3+ to Mn2+ plays a dominant role in the photoluminescence of Mn2+, instead of the conventional 4T1g → 6A1g transition of Mn2+. Thermodynamic analysis highlights the crucial role of a Cl-rich environment in obtaining the K4CdCl6 phase, while transformation from K4CdCl6 to KCdCl3 can be achieved under Cl-poor and K-poor conditions. The theoretical analysis reveals that defect Cli is more readily formed compared to defect VK, corroborating experimental findings that the K4CdCl6:Sb3+ phase is exclusively obtained when the solution contains HCl concentrations higher than 4 mol L-1. Our work provides valuable insights into the photoluminescence mechanism of Sb3+, defect engineering through heterovalent doping, and efficient energy transfer between Sb3+ and Mn2+ in K-Cd-Cl-based perovskites, which offers a new perspective for the design and development of novel AIHPs with superior optoelectronic performance.

5.
Inorg Chem ; 62(42): 17537-17546, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37815892

RESUMEN

The synthesis of sustainable luminescent materials with simplicity, low energy consumption, and nontoxicity is of great importance in the field of chemistry and materials science. In this study, a room temperature evaporation method was employed to synthesize Sb3+-doped bismuth-based halide emission crystals, allowing for investigation of spectral tuning, luminescence enhancement, and temperature sensitivity. By substitution of Rb+ with varying concentrations of Cs+ in Rb3BiCl6 (RBC), the luminescent color of the crystals can be tuned from orange to yellow. The resulting alloyed yellow-emitting crystals were identified as Rb2CsBiCl6 (RCBC). Remarkably, when one-third of the Rb+ ions were replaced by Cs+ in the RBC, the crystals exhibited improved thermal stability and a 20-fold increase in luminescence intensity. The temperature-sensitive behavior was observed for RBC:Sb, with emission shifting from 590 to 574 nm upon heating while the yellow emission of RCBC:Sb exhibited no significant peak shift with temperature. Notably, the yellow emission of RBC:Sb could be reversibly converted back to orange light upon cooling to room temperature. In contrast, RCBC:Sb exhibited no significant peak shift with temperature. The differential temperature sensitivity between RBC:Sb and RCBC:Sb offers potential applications in anti-counterfeiting measures.

6.
Light Sci Appl ; 12(1): 248, 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805511

RESUMEN

Achievement of high photoluminescence quantum efficiency and thermal stability is challenging for near-infrared (NIR)-emitting phosphors. Here, we designed a "kill two birds with one stone" strategy to simultaneously improve quantum efficiency and thermal stability of the NIR-emitting Ca3Y2-2x(ZnZr)xGe3O12:Cr garnet system by chemical unit cosubstitution, and revealed universal structure-property relationship and the luminescence optimization mechanism. The cosubstitution of [Zn2+-Zr4+] for [Y3+-Y3+] played a critical role as reductant to promote the valence transformation from Cr4+ to Cr3+, resulting from the reconstruction of octahedral sites for Cr3+. The introduction of [Zn2+-Zr4+] unit also contributed to a rigid crystal structure. These two aspects together realized the high internal quantum efficiency of 96% and excellent thermal stability of 89%@423 K. Moreover, information encryption with "burning after reading" was achieved based on different chemical resistance of the phosphors to acid. The developed NIR-emitting phosphor-converted light-emitting diode demonstrated promising applications in bio-tissue imaging and night vision. This work provides a new perspective for developing high-performance NIR-emitting phosphor materials.

7.
Angew Chem Int Ed Engl ; 62(45): e202311699, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37724623

RESUMEN

Lead-free halide double perovskites are currently gaining significant attention owing to their exceptional environmental friendliness, structural adjustability as well as self-trapped exciton emission. However, stable and efficient double perovskite with multimode luminescence and tunable spectra are still urgently needed for multifunctional photoelectric application. Herein, holmium based cryolite materials (Cs2 NaHoCl6 ) with anti-thermal quenching and multimode photoluminescence were successfully synthesized. By the further alloying of Sb3+ (s-p transitions) and Yb3+ (f-f transitions) ions, its luminescence properties can be well modulated, originating from tailoring band gap structure and enriching electron transition channels. Upon Sb3+ substitution in Cs2 NaHoCl6 , additional absorption peaking at 334 nm results in the tremendous increase of photoluminescence quantum yield (PLQY). Meanwhile, not only the typical NIR emission around 980 nm of Ho3+ is enhanced, but also the red and NIR emissions show a diverse range of anti-thermal quenching photoluminescence behaviors. Furthermore, through designing Yb3+ doping, the up-conversion photoluminescence can be triggered by changing excitation laser power density (yellow-to-orange) and Yb3+ doping concentration (red-to-green). Through a combined experimental-theoretical approach, the related luminescence mechanism is revealed. In general, by alloying Sb3+ /Yb3+ in Cs2 NaHoCl6 , abundant energy level ladders are constructed and more luminescence modes are derived, demonstrating great potential in multifunctional photoelectric applications.

8.
Inorg Chem ; 62(39): 15943-15951, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37721404

RESUMEN

Until now, effective blue light-emitting materials are essentially needed for the creation of white light and precise color renderings in real-world applications, but the efficiency of blue light-emitting materials has lagged far behind. Here, we present a hydrothermal method to synthesize tin-based metal halide single crystals (RbCdCl3:Sn2+ and Rb3SnCl7). Two single crystal materials with different shapes and phases can simultaneously be synthesized in the same stoichiometric ratio. Rb3SnCl7 has a bulk shape, while RbCdCl3:Sn2+ has a needle shape. The deep blue emission (436 nm) of RbCdCl3:Sn2+ can be obtained under the optimal excitation wavelength irradiation. However, pure blue emission (460 nm) to white light can be obtained by changing the excitation wavelength in Rb3SnCl7. The refinement spectra of the electronic structures of RbCdCl3:Sn2+ and Rb3SnCl7 are investigated by density functional theory. It is concluded that the difference in the distribution of Cl energy states leads to the existence of Cl local defect states, which is the reason for the rich luminescence of the two single crystals. These findings provide a path for realizing single-phase broadband white-emitting materials.

9.
Dalton Trans ; 52(17): 5715-5723, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37021982

RESUMEN

In this paper, Mn2+-doped Rb4CdCl6 metal halide single crystals were prepared by a hydrothermal method. The Rb4CdCl6:Mn2+ metal halide exhibits yellow emission with photoluminescence quantum yields (PLQY) as high as 88%. Due to the thermally induced electron detrapping, Rb4CdCl6:Mn2+ also displays good anti-thermal quenching (ATQ) behavior with thermal quenching resistance (131% at 220 °C). The increase in the photoionization and the detrapping of the captured electrons from the shallow trap states were appropriately attributed to this exceptional phenomenon based on thermoluminescence (TL) analysis and density functional theory (DFT) calculations. The relationship between the fluorescence intensity ratio (FIR) of the material and temperature change was further explored using the temperature-dependent fluorescence spectrum. It was used as a temperature measuring probe based on absolute sensitivity (Sa) and relative sensitivity (Sb) with the change in temperature. The phosphor-converted white light emitting diodes (pc-WLEDs) were fabricated using a 460 nm blue chip with a yellow phosphor, which has a color rendering index (CRI = 83.5) and a low correlated color temperature (CCT = 3531 K). Because of this, finding new metal halides with ATQ behavior for high-power optoelectronic applications may be made possible by our findings.

10.
Small ; 19(21): e2300862, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36811284

RESUMEN

Single-component white light emitters based on the all-inorganic perovskites will act as outstanding candidates for applications in solid-state lighting thanks to their abundant energy states for self-trapped excitons (STE) with ultra-high photoluminescence (PL) efficiency. Here, a complementary white light is realized by dual STEs emissions with blue and yellow colors in a single-component perovskite Cs2 SnCl6 :La3+ microcrystal (MC). The dual emission bands centered at 450 and 560 nm are attributed to the intrinsic STE1 emission in host lattice Cs2 SnCl6 and the STE2 emission induced by the heterovalent La3+ doping, respectively. The hue of the white light can be tunable through energy transfer between the two STEs, the variation of excitation wavelength, and the Sn4+ /Cs+ ratios in starting materials. The effects of the doping heterovalent La3+ ions on the electronic structure and photophysical properties of the Cs2 SnCl6 crystals and the created impurity point defect states are investigated by the chemical potentials calculated using density functional theory (DFT) and confirmed by the experimental results. These results provide a facile approach to gaining novel single-component white light emitter and offer fundamental insights into the defect chemistry in the heterovalent ions doped perovskite luminescent crystals.

11.
Inorg Chem ; 61(44): 17767-17776, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36337039

RESUMEN

Broadband emission with a large Stokes shift is important to obtain an excellent color rendering index of the solid-state lighting device. Among low-dimensional material and perovskite-like phosphors with broadband self-trapped emission, Sn-based phosphors have attracted much attention due to their high photoluminescence quantum yield (PLQY). However, the disadvantage is that the synthesis of Sn-based phosphors needs to be performed in a glovebox. Upon photoexcitation, the broadband emission of self-trapped excitons results from exciton-phonon coupling induced by the transient distortion of the lattice. Low-dimensional material structures often promote self-trapped emission because of more vibrational degrees of freedom and easier polarization under photoexcitation. Here, zero-dimensional (0D) SnX2 (X = Br, I) single crystals are synthesized by the solvent evaporation method in the air. SnX2 emits blue light, broadband yellow light, and deep red light, among which SnBr2 has the best luminescence performance. The photoluminescence quantum yield (PLQY) of SnBr2 reaches 85% and the Stokes shift reaches 265 nm. The PL intensity of SnX2 is linearly related to excitation power, which preliminarily indicates that the origin of SnX2 luminescence is attributed to self-trapped emission (STE). The white light-emitting diodes (WLEDs) were fabricated using yellow-emitting SnBr2 and blue-emitting BaMgAl10O17:Eu2+, which has a low correlated color temperature (3160 K) and a relatively common color rendering index (79).

12.
Inorg Chem ; 61(21): 8356-8365, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35584535

RESUMEN

All-inorganic halide perovskite crystals are considered excellent optical host lattices for various dopants to obtain wavelength-tunable emissions with ultra-broad bands even over a wide spectral range. Here, a series of Mn2+-doped bulk ligand-free CsCdCl3 (CCC) perovskite crystals with a hexagonal shape and size of about 1 millimeter (mm) have been prepared by a facile hydrothermal method. These CCC:Mn2+ (CCC:Mn) crystals emit the representative orange-red photoluminescence (PL) of Mn2+ (4T1(G)-6A1(S)) in the centers of hexagonal octahedrons coordinated with six Cl- ions. A fine-tuning of the Mn2+ concentration from 1 to 50 mol % Cd2+ induces a substantial red shift of emission spectra from 570 to 630 nm due to the shrinkage of the crystalline host lattice, and the maximum intensity of emission is achieved at 20 mol % Mn2+ doping. A further increase in the Mn2+ concentration causes a decrease of the PL intensity due to the phase transition from CCC to CsMnCl3·2H2O (CMCH). The strong excitation bands at 360, 370, 420, and 440 nm can make the excitation of the emissive CCC:Mn crystals possible with ultraviolet (UV) and blue chips for application in white light-emitting diodes (WLEDs). The similarity of the Mn2+-concentration-dependent emission spectra excited by various wavelengths indicates that there is only one type of site for Mn2+ occupation in CCC.

13.
Light Sci Appl ; 11(1): 112, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35478191

RESUMEN

Near-infrared (NIR)-emitting phosphor-converted light-emitting diodes have attracted widespread attention in various applications based on NIR spectroscopy. Except for typical Cr3+-activated NIR-emitting phosphors, next-generation Cr3+-free NIR-emitting phosphors with high efficiency and tunable optical properties are highly desired to enrich the types of NIR luminescent materials for different application fields. Here, we report the Fe3+-activated Sr2-yCay(InSb)1-zSn2zO6 phosphors that exhibit unprecedented long-wavelength NIR emission. The overall emission tuning from 885 to 1005 nm with broadened full-width at half maximum from 108 to 146 nm was realized through a crystallographic site engineering strategy. The NIR emission was significantly enhanced after complete Ca2+ incorporation owing to the substitution-induced lower symmetry of the Fe3+ sites. The Ca2InSbO6:Fe3+ phosphor peaking at 935 nm showed an ultra-high internal quantum efficiency of 87%. The as-synthesized emission-tunable phosphors demonstrated great potential for NIR spectroscopy detection. This work initiates the development of efficient Fe3+-activated broadband NIR-emitting phosphors and opens up a new avenue for designing NIR-emitting phosphor materials.

14.
Inorg Chem ; 61(15): 5903-5911, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35380804

RESUMEN

Multicolor-emission-based single-phase white light derived from different luminescence centers is an effective way to manipulate the optical properties of halide perovskites. In this work, we developed a codoping strategy to incorporate Bi3+ and Te4+ emission centers into all-inorganic lead-free Cs2HfCl6 perovskite by a hydrothermal method. The as-prepared Bi3+/Te4+-doped Cs2HfCl6 microcrystals show bright blue (Bi3+), yellow (Te4+), and warm-white emissions (Bi3+/Te4+), respectively. The broad efficient dual emission in Bi3+/Te4+ co-doped Cs2HfCl6 is assigned to the typical 3P1 → 1S0 transition emission from Bi3+ originating from [BiHf + VCl] and self-trapped excitons (STEs) from Te4+. Moreover, the concentration-optimized Cs2HfCl6:Te4+ shows excellent antiwater stability and high photoluminescence quantum yield (PLQY) of ∼70%. Meanwhile, a white light-emitting diode (WLED) fabricated using Bi3+/Te4+ co-doped Cs2HfCl6 is close to warm white with a color rendering index (CRI) of 75.4, CIE color coordinate of (0.370, 0.393), and a correlated color temperature (CCT) of 4380 K. These results suggest that Bi3+/Te4+ co-doped all-inorganic lead-free Cs2HfCl6 is a potential single-phase white light-emitting phosphor candidate for solid-state lightings.

15.
Dalton Trans ; 51(17): 6622-6630, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35411356

RESUMEN

Mixed-valence Eu2+/3+-activated phosphors have attracted wide attention due to their excellent luminescence tunability. Steady control of the Eu2+/Eu3+ ratio is the key to achieving reproducible Eu2+/3+ co-doped materials. In this work, BaMgP2O7:xEu2+/3+ (BMPO:Eu, x = 0.001-0.20) was successfully prepared by the traditional solid-state method in air. Eu3+ undergoes selective self-reduction at Ba2+ sites surrounded by a [P2O7] framework, leading to quantitive Eu2+/Eu3+. The phosphors exhibit a blue-violet emission band at ∼410 nm due to 5d-4f transitions of Eu2+ and a group of red emission peaks from 5D0-7FJ of Eu3+. Controllable multicolor emissions are realized by regulating the Eu content and excitations. A linear response of overall luminescence intensity to irradiation dose makes the phosphor appropriate for X-ray detection. The combination of UV-blue excitation-dependent color evolution and X-ray luminescence qualifies the phosphors with great potential for multi-level anti-counterfeiting. In addition, Eu3+ presents abnormal anti-thermal quenching, so that the fluorescence intensity ratio (FIR) of Eu2+/Eu3+ changes in the temperature range of 300-520 K, suggesting a promising application in optical thermometry. Therefore, selectively partial self-reduction in a multi-cationic host is an effective strategy to design mixed-valence co-doped materials, providing a multiplicity of applications.

16.
Angew Chem Int Ed Engl ; 61(22): e202116702, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35297150

RESUMEN

A crucial challenge is to develop an in situ passivation treatment strategy for CsPbX3 (CPX, X=Cl, Br, and I) quantum dots (QDs) and simultaneously retain their luminous efficiency and wavelength. Here, a facile method to significantly improve the stability of the CPX QDs via in situ crystallization with the synergistic effect of 4-bromo-butyric acid (BBA) and oleylamine (OLA) in polar solvents including aqueous solution and a possible fundamental mechanism are proposed. Monodispersed CsPbBr3 (CPB) QDs obtained in water show high photoluminescence quantum yields (PLQYs) of 86.4 % and their PL features of CPB QDs have no significant change after being dispersed in aqueous solution for 96 h, which implies the structure of CPB QDs is unchanged. The results provide a viable design strategy to synthesize all-inorganic perovskite CPX QDs with strong stability against the attack of polar solvents and shed more light on their surface chemistry.

17.
Angew Chem Int Ed Engl ; 61(8): e202115136, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-34918447

RESUMEN

In view of their excellent luminescence properties, nanocrystalline metal halide perovskites have diverse optoelectronic applications, including those related to anticounterfeiting. However, high-quality optical anticounterfeiting typically requires multiple encryptions relying on several optical modes to ensure information security. Herein, an efficient anticounterfeiting strategy based on dual optical encryption is realized by combining up- and downconversion luminescence in a nanocomposite with NaYF4 : Er3+ ,Yb3+ as core and a CsMnCl3 as shell. The emission color of this nanocomposite depends on the penetration depth of incident radiation and can be changed by varying the excitation source (980 nm laser or UV light) to produce different luminescent patterns. This feature allows one to effectively improve the anticounterfeiting index and fabricate professional anticounterfeiting materials.

18.
Dalton Trans ; 50(46): 17281-17289, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34787159

RESUMEN

The stability of perovskite quantum dots (PQDs) plays a vital role in practical devices. Besides silica coating, embedding PQDs in zeolites is another strategy to improve their stability significantly. Although the zeolite rigid framework has been reported to protect PQDs, there are few reports on the in situ synthesis of PQDs in zeolites. In this work, cubic phase CsPbX3 (X = Br, I) nanocrystals were successfully prepared by the ion exchange method combined with a non-polar organic trigger. Dropping a certain amount of ZnM2 (M = Br, I) solution into the intermediate product Cs4PbCl6 nanocrystals resulted in the formation of the final CsPbX3 nanocrystals. The ZnM2 solutions were prepared in non-polar solvents (hexane, octane, or chloroform). The highest photoluminescence quantum yield (PLQY) of the synthesized CsPbX3@zeolite composites can reach 83%, with a lifetime of 1.37 µs. The stability of the CsPbX3@zeolite composites thin film against damage from air and light is significantly improved. We fabricated white light-emitting diodes (WLEDs) using CsPbBr3@zeolite as the green light source and CsPbI3@zeolite as the red light source to further emphasize the practical application effect of the CsPbX3@zeolite composites. This work not only provides a new method for the synthesis of CsPbX3 nanocrystals but also involves the in situ synthesis of high stability CsPbX3@zeolite composites within the zeolite.

19.
Angew Chem Int Ed Engl ; 60(26): 14644-14649, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33825295

RESUMEN

Near-infrared (NIR)-emitting phosphor materials have been extensively developed for optoelectronic and biomedical applications. Although Cr3+ -activated phosphors have been widely reported, it is challenging to achieve ultra-broad and tunable NIR emission. Here, a new ultra-broadband NIR-emitting LiIn2 SbO6 :Cr3+ phosphor with emission peak at 965 nm and a full-width at half maximum of 217 nm is reported. Controllable emission tuning from 965 to 892 nm is achieved by chemical unit cosubstitution of [Zn2+ -Zn2+ ] for [Li+ -In3+ ], which can be ascribed to the upshift of 4 T2g energy level due to the strengthened crystal field. Moreover, the emission is greatly enhanced, and the FWHM reaches 235 nm. The as-prepared luminescent tunable NIR-emitting phosphors have demonstrated the potential in night-vision and NIR spectroscopy techniques. This work proves the feasibility of chemical unit cosubstitution strategy in emission tuning of Cr3+ -doped phosphors, which can stimulate further studies on the emission-tunable NIR-emitting phosphor materials.

20.
Dalton Trans ; 50(13): 4651-4662, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33725060

RESUMEN

Dual-emitting manganese ion doped LaM1-xAl11-yO19 (M = Mg, Zn) phosphors were prepared by substituting Zn2+/Mg2+ with Mn2+ and replacing Al3+ with Mn4+. The LaM1-xAl11-yO19:xMn2+,yMn4+ phosphors show a narrow green emission band of the Mn2+ ions at 514 nm and a red emission band of the Mn4+ ions at 677 nm. In addition, the thermal stability of luminescence shows that the response of Mn2+ and Mn4+ to the temperature is obviously different in LaMAl11O19, implying the potential of the prepared phosphors as optical thermometers. The decay lifetime of Mn4+ was changed with temperature due to the different fluorescence intensity ratios of Mn2+ and Mn4+, and a dual-mode optical temperature-sensing mechanism was studied in the temperature range of -50-200 °C. The maximum relative sensitivities (Sr) are calculated as 3.22 and 3.13% K-1, respectively. The unique optical thermometric features demonstrate the application potential of LaMAl11O19:Mn2+,Mn4+ in optical thermometry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...