Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Mol Biol Lett ; 26(1): 24, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090323

RESUMEN

BACKGROUND: The suppressive effects of miR-33a-5p have been reported in colorectal cancer and lung cancer. However, the functional role of miR-33a-5p in pancreatic ductal adenocarcinoma (PDAC) has not yet been elucidated. METHODS: The expression of miR-33a-5p was determined using reverse-transcription quantitative PCR (RT-qPCR) in PDAC tissues and cell lines. The association between miR-33a-5p expression and clinical categorical parameters was analyzed by the chi-square test. Cell proliferation was analyzing by Cell Counting Kit -8 (CCK-8) assay. Transwell assay was utilized to assess cell migration and invasion. The interactions between miR-33a-5p and RAP2A were verified by luciferase reporter assay, RT-qPCR, western blot analysis and RNA immunoprecipitation (RIP) assay. RESULTS: Here, we observed for the first time that miR-33a-5p expression level was significantly decreased in PDAC tissues and cell lines. There was a significant association between decreased miR-33a-5p expression and TNM stage or lymph node metastasis. Overexpression of miR-33a-5p significantly inhibited SW1990 and PANC-1 cell proliferation, migration and invasion. Knockdown of miR-33a-5p remarkedly promoted cell proliferation, migration and invasion in BxPC-3 and ASPC-1. Mechanistically, RAP2A was confirmed as the target of miR-33a-5p in PDAC cells. Moreover, RAP2A overexpression abolished miR-33a-5p-mediated suppressive effects on SW1990 and PANC-1 cells. CONCLUSIONS: Taken together, these results suggest that miR-33a-5p exerted tumor suppressive effects on PDAC cells by targeting RAP2A, which might provide a new theoretical basis for the clinical treatment of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/genética , MicroARNs/genética , Neoplasias Pancreáticas/genética , Proteínas de Unión al GTP rap/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/patología
2.
Anticancer Drugs ; 32(8): 829-841, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33929992

RESUMEN

Circular RNAs (circRNAs) are revealed to regulate breast cancer progression. This study aimed to investigate hsa_circ_0069094-mediated effects on breast cancer cell malignancy. Quantitative real time PCR was employed to evaluate the expressions of hsa_circ_0069094, miR-661 and high mobility group A1 (HMGA1). Western blot was performed to determine the protein expression of HMGA1 and proliferating cell nuclear antigen. Breast cancer malignant progressions were explained by cell counting kit-8 proliferation, cell colony formation, flow cytometry analysis, wound-healing and transwell assays. Cell glycolysis was assessed by detecting glucose take, lactate production and hexokinase 2 (HK2) protein level. The target relationship between miR-661 and hsa_circ_0069094 or HMGA1 was predicted by circular RNA interactome and targetscan online databases, and identified by dual-luciferase reporter and RNA immunoprecipitation assay. The effects of hsa_circ_0069094 knockdown on breast cancer growth in vivo were elucidated by in vivo tumor formation assay. Hsa_circ_0069094 and HMGA1 expression were significantly upregulated, while miR-661 expression level was downregulated in breast cancer tissues and cells relative to adjacent normal breast tissues or MCF-10A cells. Functionally, hsa_circ_0069094 knockdown inhibited cell glycolysis, proliferation, migration and invasion, whereas induced cell apoptosis in breast cancer, which was decreased by miR-661 inhibitor. Mechanistically, hsa_circ_0069094 regulated HMGA1 by sponging miR-661. Furthermore, hsa_circ_0069094 knockdown repressed tumor formation in vivo. Collectively, hsa_circ_0069094 knockdown repressed breast cancer cell carcinogenesis and cell glycolysis by regulating HMGA1 through sponging miR-661, which provided a new insight for studying the mechanism of hsa_circ_0069094 in modulating breast cancer development.


Asunto(s)
Neoplasias de la Mama/patología , Proteína HMGA1a/metabolismo , MicroARNs/metabolismo , ARN Circular/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA