Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxics ; 12(8)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39195684

RESUMEN

The formation of environmentally persistent free radicals (EPFRs) is mediated by the particulate matter's surface, especially transition metal oxide surfaces. In the context of current atmospheric complex pollution, various atmospheric components, such as key atmospheric oxidants ·OH and O3, are often absorbed on particulate matter surfaces, forming particulate matter surfaces containing ·OH and O3. This, in turn, influences EPFRs formation. Here, density functional theory (DFT) calculations were used to explore the formation mechanism of EPFRs by C6H5OH on α-Fe2O3(0001) surface containing the ·OH and O3, and compare it with that on clean surface. The results show that, compared to EPFRs formation with an energy barrier on a clean surface, EPFRs can be rapidly formed through a barrierless process on these surfaces. Moreover, during the hydrogen abstraction mechanism leading to EPFRs formation, the hydrogen acceptor shifts from a surface O atom on a clean surface to an O atom of ·OH or O3 on these surfaces. However, the detailed hydrogen abstraction process differs on surfaces containing oxidants: on surfaces containing ·OH, it occurs directly through a one-step mechanism, while, on surfaces containing O3, it occurs through a two-step mechanism. But, in both types of surfaces, the essence of this promotional effect mainly lies in increasing the electron transfer amounts during the reaction process. This research provides new insights into EPFRs formation on particle surfaces within the context of atmospheric composite pollution.

2.
J Phys Chem A ; 128(7): 1297-1305, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38349766

RESUMEN

The formation of environmentally persistent free radicals (EPFRs) is usually related to transition-metal oxides in particulate matter (PM). However, recent studies suggest that alkaline-earth-metal oxides (AEMOs) in PM also influence EPFRs formation, but the exact mechanism remains unclear. Here, density functional theory calculations were performed to investigate the formation mechanism of EPFRs by C6H5OH on AEMO (MgO, CaO, and BaO) surfaces and compare it with that on transition-metal oxide (ZnO and CuO) surfaces. Results indicate that EPFRs can be rapidly formed on AEMOs by dissociative adsorption of C6H5OH, accompanied by electrons transfer. As the alkalinity of AEMOs increases, both adsorption energy and the number of electron transfers gradually increase. Also, the stability of the formed EPFRs is mainly attributed to the electrostatic and van der Waals interactions between the phenoxy radical and surfaces. Notably, the formation mechanism of EPFRs on AEMOs is similar to that on ZnO but differs from that on CuO, as suggested through geometric structure and charge distribution analyses. This study not only elucidates the formation mechanisms of EPFRs on AEMOs but also provides theoretical insights into addressing EPFRs pollution.

3.
Phys Chem Chem Phys ; 25(25): 16745-16752, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37323049

RESUMEN

By seeding clouds, new particle formation (NPF) has a substantial impact on radiation balance, bio-geochemical cycles and global climate. Over oceans, both methanesulfonic acid (CH3S(O)2OH, MSA) and iodous acid (HIO2) have been reported to be closely associated with NPF events; however, much less is known about whether they can jointly nucleate to form nanoclusters. Hence, quantum chemical calculations and Atmospheric Cluster Dynamics Code (ACDC) simulations were performed to investigate the novel mechanism of MSA-HIO2 binary nucleation. The results indicate that MSA and HIO2 can form stable clusters via multiple interactions including hydrogen bonds, halogen bonds, and electrostatic forces between ion pairs after proton transfer, which are more diverse than those in MSA-iodic acid (HIO3) and MSA-dimethylamine (DMA) clusters. Interestingly, HIO2 can be protonated by MSA exhibiting base-like behavior, but it differs from base nucleation precursors by self-nucleation rather than solely binding to MSA. Due to the greater stability of MSA-HIO2 clusters, the formation rate of MSA-HIO2 clusters can be even higher than that of MSA-DMA clusters, suggesting that MSA-HIO2 nucleation is a non-negligible source of marine NPF. This work proposes a novel mechanism of MSA-HIO2 binary nucleation for marine aerosols and provides deeper insights into the distinctive nucleation characteristics of HIO2, which can help in constructing a more comprehensive sulfur- and iodine-bearing nucleation model for marine NPF.

4.
J Phys Chem Lett ; 14(18): 4357-4364, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37140136

RESUMEN

Cation exchange (CE) under mild conditions promises a facile strategy to anchor single metal sites on colloidal chalcogenides toward catalytic applications, which however has seldom been demonstrated. The dilemma behind this is the rapid kinetics and high efficiency of the reaction disfavoring atomic dispersion of the metal species. Here we report that a fine-tuning of the affinity between the incoming metal cations and the deliberately introduced ligands can be exploited to manipulate the kinetics of the CE reaction, in a quantitative and systematic manner defined by the Tolman electronic parameter of the ligands used. Moreover, the steric effect of metal-ligand complexes offers thermodynamic preference for spatial isolation of the metal atoms. These thereby allow the rational construction of single atom catalysts (SACs) via simple one-step CE reactions, as exemplified by the CE-derived incorporation of single metal atoms (M = Cu, Ag, Au, Pd) on SnS2 two-unit-cell layers through M-S coordination.

5.
Chemosphere ; 303(Pt 1): 134854, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35533943

RESUMEN

Environmentally persistent free radicals (EPFRs) have been recognized as harmful and persistent environmental pollutants. In polluted regions, many acidic and basic atmospheric pollutants, which are present at high concentrations, may influence the extent of the formation of EPFRs. In the present paper, density functional theory (DFT) and ab-initio molecular dynamics (AIMD) calculations were performed to investigate the formation mechanisms of EPFRs with the influence of the acidic pollutants sulfuric acid (SA), nitric acid (NA), organic acid (OA), and the basic pollutants, ammonia (A), dimethylamine (DMA) on α-Al2O3 (0001) surface. Results indicate that both acidic and basic pollutants can enhance the formation of EPFRs by acting as "bridge" or "semi-bridge" roles by proceeding via a barrierless process. Acidic pollutants enhance the formation of EPFRs by first transferring its hydrogen atom to the α-Al2O3 surface and subsequently reacting with phenol to form an EPFR. In contrast, basic pollutants enhance the formation of EPFRs by first abstracting a hydrogen atom from phenol to form a phenoxy EPFR and eventually interacting with the α-Al2O3 surface. These new mechanistic insights will inform in understanding the abundant EPFRs in polluted regions with high mass concentrations of acidic and basic pollutants.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Radicales Libres/análisis , Hidrógeno , Material Particulado/análisis , Fenol
6.
Phys Chem Chem Phys ; 23(30): 15935-15949, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34296723

RESUMEN

Comprehensive investigations of the possible formation pathways of sulfate, the main composition of atmospheric aerosol in marine areas, continue to challenge atmospheric chemists. As one of the most important oxidation routes of S(iv) contributing to sulfate formation, the reaction process of S(iv) oxidized by hypobromic acid, which is ubiquitous with the gas-phase mixing ratios of ∼310 ppt and has a well-known oxidative capacity, has attracted wide attention. However, little information is available about the detailed reaction mechanism. Especially, due to the abundant species in cloud water, the potential effect of these compositions on these reaction processes and the corresponding effect mechanism are also uncertain. Using high-level quantum chemical calculations, we theoretically elucidate the two-step mechanism of Br+ transfer proposed by experiment through the verification of the key BrSO3- intermediate formation and subsequent hydrolysis reaction or the uncovered reaction of BrSO3- intermediate with OH-. Further, the novel and more competitive mechanisms (OH+ or O atom transfer pathways) that have not been considered in previous studies, leading to sulfate formation directly, have been found. Furthermore, it should be mentioned that we revealed the effect mechanism of constituents catalyzed in cloud water, especially the important H2O-catalyzed mechanism. In addition, all the above pathways follow this catalytic mechanism. This finding indicates a linkage between the complex nature of the atmospheric constituents and related atmospheric reaction, as well as the enhanced occurrence of atmospheric secondary sulfate formation in the atmosphere. Hence, this exploration of sulfate formation related to hypobromic acid could provide a better understanding about the sources of sulfate in marine areas.

7.
Biosens Bioelectron ; 141: 111440, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31233987

RESUMEN

B-type natriuretic peptide (BNP) is a short peptide that is considered to be an important heart failure (HF)-related biomarker. Due to its low concentration in the blood and short half-life, the sensitive detection of BNP is a bottleneck for diagnosing patients at early stages of HF. In this paper, we report a facile surface plasmon resonance (SPR) sensor to measure BNP; the sensor is based on aptamer-functionalized Au nanoparticles (GNPs-Apt) and antibody-modified magnetoplasmonic nanoparticles (MNPs-Ab) to enable dual screening of BNP in complex environments. During sensing, BNP forms MNP-Ab/BNP/GNP-Apt nanoconjugates that can be rapidly separated from the complex sample by a magnet to avoid degradation within the analyte's half-life. The developed SPR biosensor shows high selectivity, a wide dynamic response range of BNP concentrations from 100 fg/mL to 10 ng/mL, and a low detection limit of 28.2 fg/mL (S/N = 3). Using the proposed sensor, BNP was successfully detected in clinical samples. Thus, the designed SPR biosensor provides a novel and sensitive sensing platform for BNP detection with potential applications in clinical practice.


Asunto(s)
Aptámeros de Nucleótidos/química , Oro/química , Nanopartículas del Metal/química , Péptido Natriurético Encefálico/sangre , Resonancia por Plasmón de Superficie/métodos , Anticuerpos Inmovilizados/química , Humanos , Límite de Detección , Nanopartículas del Metal/ultraestructura , Nanoconjugados/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...