Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 5(6): 606-10, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15915252

RESUMEN

A new biosensing system is described that is based on the aggregation of nanoparticles by a target biological molecule and dielectrophoretic impedance measurement of these aggregates. The aggregation process was verified within a microchannel via fluorescence microscopy, demonstrating that this process can be used in a real time sensor application. Positive dielectrophoresis is employed to capture the nanoparticle aggregates at the edge of thin film electrodes, where their presence is detected either by optical imaging via fluorescence microscopy or by measuring the change in electrical impedance between adjacent electrodes. The electrical detection mechanism demonstrates the potential for this method as a micro total analysis system (microTAS).


Asunto(s)
Avidina/química , Técnicas Biosensibles/instrumentación , Electroforesis por Microchip/instrumentación , Microfluídica/instrumentación , Nanoestructuras/química , Polietilenglicoles/química , Técnicas Biosensibles/métodos , Biotinilación , Compuestos de Cadmio/química , Impedancia Eléctrica , Electrodos , Electroforesis por Microchip/métodos , Microfluídica/métodos , Microscopía Fluorescente/métodos , Nanoestructuras/análisis , Oxidación-Reducción , Dióxido de Silicio/química , Sulfuros/química , Propiedades de Superficie
2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(6 Pt 2): 066617, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15697536

RESUMEN

Dielectrophoresis (DEP) is the movement of polarizable species in a nonuniform electric field. DEP is used to attract (positive DEP) to or repel from (negative DEP) regions of high field intensity and is useful for manipulating species, including biological species. Current theoretical and numerical approaches used to predict the response to DEP forces assume that the target species is a point particle; however, in practice, the target species is of finite size, e.g., macromolecules, spores and assay beads. To elucidate the importance of target species size effects, higher order terms in the DEP force multipole expansion must be considered [Electrophoresis 23, 1973 (2002)]]. In this paper, we used the method of Green's function to derive and explore the importance of the quadrupolar contribution to the DEP forces acting on finite-sized species produced by a planar, interdigitated array of electrodes. Based on the analysis, it was found, for example, that at a fixed height of 20 mum in an interdigitated DEP array with an electrode width and spacing of 20 mum energized by a 10 Vp p, 1.0 MHz ac signal, the quadrupolar contribution to the total DEP force was 5% for a latex bead with 4.2 mum in radius and 10% for the one with 6 mum in radius. For a fixed, fractional quadrupolar contribution, beta , both the exact calculation and the scaling estimate elucidate that the critical size of particle increase linearly with the electrode width (and spacing) at a fixed height, while the critical particle radius increases with a square-root dependence on the width height above the electrode in the electrode array.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...