Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chemosphere ; : 142422, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38795916

RESUMEN

The widespread use of silver nanoparticles (AgNPs) in commercial and industrial applications has led to their increased presence in the environment, raising concerns about their ecological and health impacts. This study pioneers an investigation into the chronic versus short-term acute toxicological impacts of differently coated AgNPs on zebrafish, with a novel focus on the thyroid-disrupting effects previously unexplored. The results showed that acute toxicity ranked from highest to lowest as AgNO3 (0.128 mg/L), PVP-AgNPs (1.294 mg/L), Citrate-AgNPs (6.984 mg/L), Uncoated-AgNPs (8.269 mg/L). For bioaccumulation, initial peaks were observed at 2 days, followed by fluctuations over time, with the eventual highest enrichment seen in Uncoated-AgNPs and Citrate-AgNPs at concentrations of 13 and 130 µg/L. Additionally, the four exposure groups showed a significant increase in T3 levels, which was 1.28-2.11 times higher than controls, and significant changes in thyroid peroxidase (TPO) and thyroglobulin (TG) content, indicating thyroid disruption. Gene expression analysis revealed distinct changes in the HPT axis-related genes, providing potential mechanisms underlying the thyroid toxicity induced by different AgNPs. The higher the Ag concentration in zebrafish, the stronger the thyroid disrupting effects, which in turn affected growth and development, in the order of Citrate-AgNPs, Uncoated-AgNPs > AgNO3, PVP-AgNPs. This research underscores the importance of considering nanoparticle coatings in risk assessments and offers insights into the mechanisms by which AgNPs affect aquatic organisms' endocrine systems, highlighting the need for careful nanotechnology use and the relevance of these findings for understanding environmental pollutants' role in thyroid disease.

2.
Ecotoxicol Environ Saf ; 276: 116296, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593498

RESUMEN

Microplastics (MPs), which are prevalent and increasingly accumulating in aquatic environments. Other pollutants coexist with MPs in the water, such as pesticides, and may be carried or transferred to aquatic organisms, posing unpredictable ecological risks. This study sought to assess the adsorption of lambda-cyhalothrin (LCT) by virgin and aged polyethylene MPs (VPE and APE, respectively), and to examine their influence on LCT's toxicity in zebrafish, specifically regarding acute toxicity, oxidative stress, gut microbiota and immunity. The adsorption results showed that VPE and APE could adsorb LCT, with adsorption capacities of 34.4 mg∙g-1 and 39.0 mg∙g-1, respectively. Compared with LCT exposure alone, VPE and APE increased the acute toxicity of LCT to zebrafish. Additionally, exposure to LCT and PE-MPs alone can induce oxidative stress in the zebrafish gut, while combined exposure can exacerbate the oxidative stress response and intensify intestinal lipid peroxidation. Moreover, exposure to LCT or PE-MPs alone promotes inflammation, and combined exposure leads to downregulation of the myd88-nf-κb related gene expression, thus impacting intestinal immunity. Furthermore, exposure to APE increased LCT toxicity to zebrafish more than VPE. Meanwhile, exposure to PE-MPs and LCT alone or in combination has the potential to affect gut microbiota function and alter the abundance and diversity of the zebrafish gut flora. Collectively, the presence of PE-MPs may affect the toxicity of pesticides in zebrafish. The findings emphasize the importance of studying the interaction between MPs and pesticides in the aquatic environment.


Asunto(s)
Microbioma Gastrointestinal , Microplásticos , Nitrilos , Estrés Oxidativo , Polietileno , Piretrinas , Contaminantes Químicos del Agua , Pez Cebra , Animales , Piretrinas/toxicidad , Nitrilos/toxicidad , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Polietileno/toxicidad , Adsorción
3.
Aquat Toxicol ; 269: 106881, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430782

RESUMEN

Dibutyl phthalate (DBP) is a commonly used plasticizer that is frequently detected in water samples due to its widespread use. Titanium dioxide nanoparticles (n-TiO2) have been found to enhance the harmful effects of organic contaminants by increasing their bioavailability in aquatic environments. However, the combined toxic effects of DBP and n-TiO2 on aquatic organisms remain unclear. This study aimed to investigate the neurotoxicity of DBP and n-TiO2 synergistic exposure during the early life stage of zebrafish. The results of the study revealed that co-exposure of DBP and n-TiO2 led to an increase in deformities and a significant reduction in the active duration of zebrafish larvae. Furthermore, the co-exposure of DBP and n-TiO2 resulted in elevated levels of oxidative stress and altered gene expression related to neurodevelopment and apoptosis. Notably, n-TiO2 exacerbated the oxidative damage and apoptosis induced by DBP alone exposure. Additionally, co-exposure of the 1.0 mg/L DBP and n-TiO2 significantly affected the expression of genes associated with neurodevelopment. Moreover, disturbances in amino acid metabolism and interference with lipid metabolism were observed as a result of DBP and n-TiO2 co-exposure. In general, n-TiO2 aggravated the neurotoxicity of DBP in the early life stage of zebrafish by increasing oxidative stress, apoptosis, and disrupting amino acid synthesis and lipid metabolism. Therefore, it is essential to consider the potential risks caused by DBP and nanomaterials co-existence in the aquatic environment.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Dibutil Ftalato/toxicidad , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo , Titanio/toxicidad , Aminoácidos/metabolismo
4.
Biophys J ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38400542

RESUMEN

Large-conductance Ca2+-activated K+ channels (BK channels) are formed by Slo1 subunits as a homotetramer. Besides Ca2+, other divalent cations, such as Cd2+, also activate BK channels when applied intracellularly by shifting the conductance-voltage relation to more negative voltages. However, we found that if the inside-out patch containing BK channels was treated with solution containing reducing agents such as dithiothreitol (DTT), then subsequent Cd2+ application completely inhibited BK currents. The DTT-dependent Cd2+ inhibition could be reversed by treating the patch with solutions containing H2O2, suggesting that a redox reaction regulates the Cd2+ inhibition of BK channels. Similar DTT-dependent Cd2+ inhibition was also observed in a mutant BK channel, Core-MT, in which the cytosolic domain of the channel is deleted, and in the proton-activated Slo3 channels but not observed in the voltage-gated Shaker K+ channels. A possible mechanism for the DTT-dependent Cd2+ inhibition is that DTT treatment breaks one or more disulfide bonds between cysteine pairs in the BK channel protein and the freed thiol groups coordinate with Cd2+ to form an ion bridge that blocks the channel or locks the channel at the closed state. However, surprisingly, none of the mutations of all cysteine residues in Slo1 affect the DTT-dependent Cd2+ inhibition. These results are puzzling, with an apparent contradiction: on one hand, a redox reaction seems to regulate Cd2+ inhibition of the channel, but on the other hand, no cysteine residue in the Slo1 subunit seems to be involved in such inhibition.

5.
Sci Total Environ ; 921: 171160, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38395170

RESUMEN

The interaction between pesticides and microplastics (MPs) can lead to changes in their mode of action and biological toxicity, creating substantial uncertainty in risk assessments. Succinate dehydrogenase inhibitor (SDHI) fungicides, a common fungicide type, are widely used. However, little is known about how penthiopyrad (PTH), a member of the SDHI fungicide group, interacts with polyethylene microplastics (PE-MPs). This study primarily investigates the individual and combined effects of virgin or aged PE-MPs and penthiopyrad on zebrafish (Danio rerio), including acute toxicity, bioaccumulation, tissue pathology, enzyme activities, gut microbiota, and gene expression. Short-term exposure revealed that PE-MPs enhance the acute toxicity of penthiopyrad. Long-term exposure demonstrated that PE-MPs, to some extent, enhance the accumulation of penthiopyrad in zebrafish, leading to increased oxidative stress injury in their intestines by the 7th day. Furthermore, exposure to penthiopyrad and/or PE-MPs did not result in histopathological damage to intestinal tissue but altered the gut flora at the phylum level. Regarding gene transcription, penthiopyrad exposure significantly modified the expression of pro-inflammatory genes in the zebrafish gut, with these effects being mitigated when VPE or APE was introduced. These findings offer a novel perspective on environmental behavior and underscore the importance of assessing the combined toxicity of PE-MPs and fungicides on organisms.


Asunto(s)
Fungicidas Industriales , Pirazoles , Tiofenos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Microplásticos/metabolismo , Plásticos/toxicidad , Pez Cebra/metabolismo , Polietileno/toxicidad , Polietileno/metabolismo , Fungicidas Industriales/toxicidad , Fungicidas Industriales/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
6.
Sci Data ; 10(1): 886, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071220

RESUMEN

The heart of the fruit fly, Drosophila melanogaster, is a particularly suitable model for cardiac studies. Optical coherence microscopy (OCM) captures in vivo cross-sectional videos of the beating Drosophila heart for cardiac function quantification. To analyze those large-size multi-frame OCM recordings, human labelling has been employed, leading to low efficiency and poor reproducibility. Here, we introduce a robust and accurate automated Drosophila heart segmentation algorithm, called FlyNet 2.0+, which utilizes a long short-term memory (LSTM) convolutional neural network to leverage time series information in the videos, ensuring consistent, high-quality segmentation. We present a dataset of 213 Drosophila heart videos, equivalent to 604,000 cross-sectional images, containing all developmental stages and a wide range of beating patterns, including faster and slower than normal beating, arrhythmic beating, and periods of heart stop to capture these heart dynamics. Each video contains a corresponding ground truth mask. We expect this unique large dataset of the beating Drosophila heart in vivo will enable new deep learning approaches to efficiently characterize heart function to advance cardiac research.


Asunto(s)
Drosophila melanogaster , Drosophila , Corazón , Animales , Corazón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía
7.
Mikrochim Acta ; 191(1): 68, 2023 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-38159155

RESUMEN

Peptidomimetic and anti-immunocomplex peptides can be easily isolated from phage display libraries, and can be used as alternatives to chemical competing haptens to improve the sensitivity of small molecule immunoassay. In this work, 16 peptidomimetics and 7 anti-immunocomplex peptides of pendimethalin (PND) were obtained from cyclic 7-, 8-, 9-, and 10-residue peptide phage libraries. Peptidomimetic EJ-2 (CMFTGTDFPC) with the highest sensitivity in competitive phage enzyme-linked immunosorbent assay (ELISA) and immunocomplex peptide EF-30 (CNPGWPPIPC) with the highest sensitivity in noncompetitive phage ELISA were selected to prepare phage-free peptides with GGGSSK-biotin at the C-terminus. Competitive and noncompetitive lateral flow immunoassays (CLFIA and NLFIA) were developed by using the phage-free peptides. After optimization, the CLFIA and NLFIA showed visual limit of detections (vLODs) of 5 ng/mL and 2.5 ng/mL, respectively, which were improved two- and fourfold compared with a LFIA based on chemical hapten. The NLFIA showed better sensitivity than CLFIA in the detection of spiked samples, and can meet the detection requirements for agro-products regulated by EU and China. The detection results of CLFIA and NLFIA for blind samples were consistent with that of ultra performance liquid chromatography/tandem mass spectrometry.


Asunto(s)
Bacteriófagos , Peptidomiméticos , Péptidos/química , Inmunoensayo/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Biblioteca de Péptidos
8.
Sci Total Environ ; 899: 165684, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37482360

RESUMEN

Phthalate esters (PAEs) are widely used as plasticizers. PAEs are ubiquitous in natural water bodies, with dibutyl phthalate (DBP) being one of the most common PAEs. DBP is prone to leaching or migration into the environment, posing serious health and environmental risks. Carbon nanotubes (CNTs) have been widely used in various fields with the rapid development of nanotechnology. CNTs could alter the environmental behavior and toxicity of co-existing pollutants. CNTs have been shown to rapidly adsorb PEAs. However, current knowledge about the effects of CNTs on DBP toxicity is limited. Here we show that the toxic effects of single and combined exposure to DBP (0.1, 0.5, 1.0 mg/L) and different CNTs (MWCNTs/MWCNTs-COOH, 0.5 mg/L) on the early growth stage of zebrafish. The results suggested that a significant increase in heart rate and heart malformation rate was observed after co-exposure of DBP and MWCNTs/MWCNTs-COOH (p < 0.05). Furthermore, combined exposure increased antioxidant enzyme activity during early developmental stages in zebrafish (p < 0.05). The qRT-PCR results revealed that DBP and MWCNTs/MWCNTs-COOH co-exposure significantly interfered with the expression of genes related to oxidative stress, energy metabolism, development of cardiac function, and apoptosis (p < 0.05). In addition, for oxidative stress and cardiotoxicity, MWCNTs/MWCNTs-COOH aggravated the toxic effects of 0.5 mg/L DBP on embryos/larvae. The metabolomics results showed that co-exposure mitigated the disturbance of amino acid metabolism mediated by single DBP exposure. In general, MWCNTs/MWCNTs-COOH increased the impact of DBP in the early developmental stages of zebrafish. This study provides new insights into the toxicology of early developmental stages of aquatic organisms exposed to co-exist pollutants of DBP and CNTs.


Asunto(s)
Contaminantes Ambientales , Nanotubos de Carbono , Animales , Pez Cebra/fisiología , Dibutil Ftalato/toxicidad , Nanotubos de Carbono/toxicidad , Nanotubos de Carbono/química , Estrés Oxidativo , Antioxidantes/farmacología
9.
Environ Sci Pollut Res Int ; 30(40): 93285-93294, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37505385

RESUMEN

Thiamethoxam (TMX) has been registered for use on a wide range of crops due to its versatile application methods, however, there is limited literature evaluating the residue behaviors of TMX applied through root irrigation. In this study, the uptake and translocation of TMX, its degradation to clothianidin (CLO), and dissipation in the tomato plant-soil system were conducted. TMX applied by root irrigation was transferable within the tomato plant, including stems, leaves, and fruits at different heights. TMX concentrations in the four sections of stems were ordered as Clower > Cmid > Cupper > Ctop, while in the leaves were ordered as Ctop > Cupper > Cmid > Clower. The degradation product CLO was detected in the tomato plant, and concentrations of CLO were even higher than those of TMX in the leaves. The translocation factor (TF) of TMX in the same section generally followed the order of TFleaf > TFstem > TFfruit. Residues of TMX and CLO in tomato on 7 days after application were below maximum residue limits (MRLs) in China and Codex Alimentarius Commission (CAC). This study promotes the evaluation of TMX applied through root irrigation for use in the tomato system from a dietary safety perspective.


Asunto(s)
Insecticidas , Solanum lycopersicum , Tiametoxam , Suelo/química , Neonicotinoides , Insecticidas/química
10.
Environ Pollut ; 333: 122089, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37364755

RESUMEN

The co-exposure of microplastics (MPs) and other contaminants has aroused extensive attention, but the combined impacts of MPs and pesticides remain poorly understood. Acetochlor (ACT), a widely used chloroacetamide herbicide, has raised concerns for its potential bio-adverse effects. This study evaluated the influences of polyethylene microplastics (PE-MPs) for acute toxicity, bioaccumulation, and intestinal toxicity in zebrafish to ACT. We found that PE-MPs significantly enhanced ACT acute toxicity. Also, PE-MPs increased the accumulation of ACT in zebrafish and aggravate the oxidative stress damage of ACT in intestines. Exposure to PE-MPs or/and ACT causes mild damage to the gut tissue of zebrafish and altered gut microbial composition. In terms of gene transcription, ACT exposure triggered a significant increase in inflammatory response-related gene expressions in the intestines, while some pro-inflammatory factors were found to be inhibited by PE-MPs. This study provides a new perspective on the fate of MPs in the environment and on the assessment of the combined effects of MPs and pesticides on organisms.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Microplásticos/metabolismo , Polietileno/toxicidad , Polietileno/metabolismo , Plásticos/metabolismo , Pez Cebra/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
11.
Chem Biol Interact ; 369: 110252, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36347316

RESUMEN

Penthiopyrad was extensively applied in agricultural production, however, the toxicities information of the penthiopyrad enantiomers on early life stages of aquatic organism were limited. This study investigated the enantioselective toxicity of penthiopyrad on the early life stage of zebrafish by acute toxicity, sublethal toxic effects and the mRNA relative expression levels of genes related to succinate dehydrogenase, cardiac development, and lipid metabolism. The results showed that the 96-h-LC50 of penthiopyrad racemate and enantiomers to zebrafish embryos were Rac-: 2.784 mg/L; R-(-)-: 3.528 mg/L; S-(+)-: 1.882 mg/L. Penthiopyrad exposure induced autonomous movement abnormalities, slowed heart rate and delayed hatching in zebrafish embryos, and caused developmental toxic effects such as pericardial edema and yolk sac edema. The mRNA relative expression levels results showed that penthiopyrad exposure induced significant enantioselectivity effect for the expression of the Sdha, Pr1 and Nkx2.5 with a 1.94-4.98-fold difference between different enantiomers, and significantly affected succinate dehydrogenase (energy metabolism), lipid metabolism and cardiac development-related genes expression. In general, S-(+)-penthiopyrad induced higher toxic effects in zebrafish embryos, and mitochondrial dysfunction may be an important cause of abnormal development. This study contributed to improve the comprehensive risk assessment and enantiomeric research system of penthiopyrad to early life stage of zebrafish.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/metabolismo , Antifúngicos/farmacología , Agroquímicos/metabolismo , Agroquímicos/farmacología , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/farmacología , Embrión no Mamífero , Estereoisomerismo , Edema/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Contaminantes Químicos del Agua/toxicidad
13.
Nat Commun ; 13(1): 6784, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351900

RESUMEN

BK type Ca2+-activated K+ channels activate in response to both voltage and Ca2+. The membrane-spanning voltage sensor domain (VSD) activation and Ca2+ binding to the cytosolic tail domain (CTD) open the pore across the membrane, but the mechanisms that couple VSD activation and Ca2+ binding to pore opening  are not clear. Here we show that a compound, BC5, identified from in silico screening, interacts with the CTD-VSD interface and specifically modulates the Ca2+ dependent activation mechanism. BC5 activates the channel in the absence of Ca2+ binding but Ca2+ binding inhibits BC5 effects. Thus, BC5 perturbs a pathway that couples Ca2+ binding to pore opening to allosterically affect both, which is further supported by atomistic simulations and mutagenesis. The results suggest that the CTD-VSD interaction makes a major contribution to the mechanism of Ca2+ dependent activation and is an important site for allosteric agonists to modulate BK channel activation.


Asunto(s)
Calcio , Canales de Potasio de Gran Conductancia Activados por el Calcio , Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Membrana Celular/metabolismo , Calcio/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-36293649

RESUMEN

An in-depth study of the influence mechanism of oasis land surface temperature (LST) in arid regions is essential to promote the stable development of the ecological environment in dry areas. Based on MODIS, MYD11A2 long time series data from 2003 to 2020, the Mann-Kendall nonparametric test, the Sen slope, combined with the Hurst index, were used to analyze and predict the trend of LST changes in the urban agglomeration on the northern slopes of the Tianshan Mountains. This paper selected nine influencing factors of the slope, aspect, air temperature, normalized vegetation index (NDVI), precipitation (P), nighttime light index (NTL), patch density (PD), mean patch area (AREA_MN), and aggregation index (AI) to analyze the spatial heterogeneity of LST from global and local perspectives using the geodetector (GD) model and multi-scale geo-weighted regression (MGWR) model. The results showed that the average LSTs of the urban agglomeration on the northern slopes of the Tianshan Mountains in spring, summer, autumn, and winter were 31.53 °C, 47.29 °C, 22.38 °C, and -5.20 °C in the four seasons from 2003 to 2020, respectively. Except for autumn, the LST of all seasons showed an increasing trend, bare soil and grass land had a warming effect, and agricultural land had a cooling effect. The results of factor detection showed that air temperature, P, and NDVI were the dominant factors affecting the spatial variation of LST. The interaction detection results showed that the interaction between air temperature and NDVI was the most significant, and the two-factor interaction was more effective than the single-factor effect on LST. The MGWR model results showed that the effects of PD on LST were positively correlated, and the impact of AREA_MN and AI on LST were negatively correlated, indicating that the dense landscape of patches has a cooling effect on LST. Overall, this study provides information for managers to carry out more targeted ecological stability regulations in arid zone oases and facilitates the development of regulatory measures to maintain the cold island effect and improve the environment.


Asunto(s)
Frío , Monitoreo del Ambiente , Temperatura , Monitoreo del Ambiente/métodos , China , Suelo , Ciudades
15.
J Vis Exp ; (186)2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36094265

RESUMEN

Using Drosophila melanogaster (fruit fly) as a model organism has ensured significant progress in many areas of biological science, from cellular organization and genomic investigations to behavioral studies. Due to the accumulated scientific knowledge, in recent years, Drosophila was brought to the field of modeling human diseases, including heart disorders. The presented work describes the experimental system for monitoring and manipulating the heart function in the context of a whole live organism using red light (617 nm) and without invasive procedures. Control over the heart was achieved using optogenetic tools. Optogenetics combines the expression of light-sensitive transgenic opsins and their optical activation to regulate the biological tissue of interest. In this work, a custom integrated optical coherence tomography (OCT) imaging and optogenetic stimulation system was used to visualize and modulate the functioning D. melanogaster heart at the 3rd instar larval and early pupal developmental stages. The UAS/GAL4 dual genetic system was employed to express halorhodopsin (eNpHR2.0) and red-shifted channelrhodopsin (ReaChR), specifically in the fly heart. Details on preparing D. melanogaster for live OCT imaging and optogenetic pacing are provided. A lab-developed integration software processed the imaging data to create visual presentations and quantitative characteristics of Drosophila heart function. The results demonstrate the feasibility of initiating cardiac arrest and bradycardia caused by eNpHR2.0 activation and performing heart pacing upon ReaChR activation.


Asunto(s)
Drosophila melanogaster , Optogenética , Animales , Fenómenos Fisiológicos Cardiovasculares , Drosophila/fisiología , Drosophila melanogaster/genética , Corazón/diagnóstico por imagen , Corazón/fisiología , Humanos , Optogenética/métodos
16.
Chem Biol Interact ; 366: 110149, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36084723

RESUMEN

The frequent application of second-generation neonicotinoids thiamethoxam (TMX) and clothianidin (CLO) has led to a high detectable rate in environment samples and poses threats to nontarget organisms and human beings, however, the information on the influences of long-term exposure at low doses was limited. In this study, the tissue distribution of TMX and CLO in mice at acceptable daily intake (ADI) level and 5 × ADI was determined and the health effects were assessed. TMX and CLO were detected in the liver, serum, lung, heart and kidney in the TMX exposure groups, which indicated that TMX degraded to CLO in mice. Residue levels of TMX in tissues increased with the increasing of doses. The concentrations of CLO in different tissues in the CLO exposure groups were in the order Ckidney > Clung > Cheart > Cliver. Measurement of biochemical indicators, combined with metabolomic analysis of liver, kidney, and cecal contents, examination of changes in the gut microbiota, and histopathological assessment indicated that both TMX and CLO affected energy absorption and lipid metabolism in mice and destroyed tissue structures. Furthermore, we found that CLO had a stronger effect on metabolism in mice, despite its lower acute toxicity. These results have prompted us to consider the chronic toxicity and potential hazards of chemicals in future risk assessments.


Asunto(s)
Insecticidas , Nitrocompuestos , Animales , Guanidinas , Humanos , Insecticidas/química , Ratones , Neonicotinoides/toxicidad , Oxazinas/química , Oxazinas/toxicidad , Tiametoxam , Tiazoles , Distribución Tisular
17.
Foods ; 11(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35804675

RESUMEN

Procymidone is used as a preventive and curative fungicide to control fungal growth on edible crops and ornamental plants. It is one of the most frequently used pesticides and has a high detection rate, but its residue behaviors remain unclear in green onion and garlic plants (including garlic, garlic chive, and serpent garlic). In this study, the dissipation and terminal residues of procymidone in four matrices were investigated, along with the validation of the method and risk assessment. The analytical method for the target compound was developed using gas chromatography-tandem mass spectrometry (GC-MS/MS), which was preceded by a Florisil cleanup. The linearities of this proposed method for investigating procymidone in green onion, garlic, garlic chive, and serpent garlic were satisfied in the range from 0.010 to 2.5 mg/L with R2 > 0.9985. At the same time, the limits of quantification in the four matrices were 0.020 mg/kg, and the fortified recoveries of procymidone ranged from 86% to 104%, with relative standard deviations of 0.92% to 13%. The dissipation of procymidone in green onion and garlic chive followed first-order kinetics, while the half-lives were less than 8.35 days and 5.73 days, respectively. The terminal residue levels in garlic chive were much higher than those in green onion and serpent garlic because of morphological characteristics. The risk quotients of different Chinese consumer groups to procymidone in green onion, garlic chive, and serpent garlic were in the range from 5.79% to 25.07%, which is comparably acceptable. These data could provide valuable information on safe and reasonable use of procymidone in its increasing applications.

18.
Environ Toxicol ; 37(7): 1662-1674, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35297557

RESUMEN

The research on the enantioselective toxic effects of chiral pesticides on non-target aquatic organisms has attracted more and more attention. This study investigated the enantioselective toxic effects of mefentrifluconazole (MFZ) on acute toxicity, developmental toxicity, locomotor behaviors, and the mRNA relative expression levels of genes related to neurodevelopment and cardiac development in zebrafish embryos or larvae. The 96-h lethal concentration 50 (LC50 ) values (exposed to racemate and enantiomers of MFZ, that is, rac-MFZ/(-)-MFZ/(+)-MFZ) were 1.010, 1.552, and 0.753 mg/L for embryo, and 0.753, 1.187, and 0.553 mg/L for larvae. The rac-MFZ/(-)-MFZ/(+)-MFZ can affect the heart development of zebrafish embryos, accompanied by heart rate inhibition, yolk sac deformities, pericardial deformities, and down-regulation of genes related to cardiotoxicity in larvae in an enantioselective manner. Moreover, the rac-MFZ/(-)-MFZ/(+)-MFZ also can affect the neural development of zebrafish embryos, accompanied by autonomic movement inhibition, swimming speed and swimming distance abnormalities, and down-regulation of genes related to neurotoxicity in larvae in an enantioselective manner. For all toxicity endpoints, the effect of the (+)-MFZ to early-staged zebrafish were significantly greater than that of (-)-MFZ. These results will help distinguishing the difference of MFZ enantiomers to zebrafish, and provide scientific reference for improving the risk assessment of chiral pesticides MFZ.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Animales , Embrión no Mamífero , Fluconazol/análogos & derivados , Larva/genética , Estereoisomerismo , Contaminantes Químicos del Agua/metabolismo , Pez Cebra/metabolismo
19.
Chemosphere ; 294: 133690, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35063547

RESUMEN

The effects of different multi-walled carbon nanotubes on the enantioselective bioaccumulation and toxicity of the chiral pesticide bifenthrin to zebrafish were investigated in this work. The results showed that MWCNTs and MWCNTs-COOH did not affect the preferential bioaccumulation of 1R-cis-BF in zebrafish following exposure to cis-BF enantiomers for 28 days, but which increased cis-BF accumulation amount by 1.03-1.48 times. Further research demonstrated that the genes related to immunity, endocrine activity and neurotoxicity showed enantioselective expression in different zebrafish tissues, and sex-specific differences were observed. The levels of c-fos, th, syn2a, 17ß-hsd and cc-chem were expressed as 1.09-2.84 times higher in females and males treated with 1R-cis-BF than in the 1S-cis-BF-treated groups. However, in the presence of MWCNTs or MWCNTs-COOH, c-fos, th, syn2a, 17ß-hsd and cc-chem levels were expressed as 1.53-14.92 times higher in females and males treated with 1S-cis-BF than in 1R-cis-BF-treated groups, which indicated that enantioselective expression was altered. The effects of different types of MWCNTs on the enantioselective bioaccumulation and toxicity of BF in zebrafish have little difference. In summary, the presence of MWCNTs or MWCNTs-COOH increased the impact of BF on zebrafish. Therefore, the risks posed by coexisting nanomaterials and chiral pesticides in aquatic environments should be considered.


Asunto(s)
Insecticidas , Nanotubos de Carbono , Animales , Bioacumulación , Femenino , Insecticidas/metabolismo , Insecticidas/toxicidad , Masculino , Nanotubos de Carbono/toxicidad , Piretrinas , Estereoisomerismo , Pez Cebra/metabolismo
20.
Toxicology ; 467: 153095, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34999168

RESUMEN

Mefentrifluconazole, a new type of chiral triazole fungicide, is widely applied to control a variety of fungal diseases in crops. However, the toxicological effects of mefentrifluconazole on aquatic organisms are unknown, especially at the enantiomer level. In the present study, zebrafish were selected as a typical model for mefentrifluconazole enantiomer exposure. Metabolomic and transcription analyses were performed with 0.01 and 0.10 mg/L mefentrifluconazole and its enantiomers (i.e., rac-mfz/(-)-mfz/(+)-mfz) at 28 days. The 1H nuclear magnetic resonance (NMR)-based metabolomics analysis showed that 9, 10 and 4 metabolites were changed significantly in the rac-mfz, (+)-mfz and (-)-mfz treatment groups compared with the control group, respectively. The differential metabolites were related to energy metabolism, lipid metabolism and amino acid metabolism. The qRT-PCR analysis revealed that the expression of lipid metabolism-, apoptosis- and CYP-related genes in the livers of female zebrafish in rac-mfz and (+)-mfz was 1.61-108.92 times and 2.37-551.34 times higher than that in (-)-mfz, respectively. The results above indicate that exposure to mefentrifluconazole induced enantioselective liver toxicity in zebrafish. Our study underlined the importance of distinguishing different enantiomers, which will contribute to environmental protection.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Fluconazol/análogos & derivados , Fungicidas Industriales/toxicidad , Hígado/efectos de los fármacos , Metaboloma/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Pez Cebra , Animales , Femenino , Fluconazol/química , Fluconazol/toxicidad , Fungicidas Industriales/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Metabolómica , Estructura Molecular , Espectroscopía de Protones por Resonancia Magnética , Factores Sexuales , Estereoisomerismo , Relación Estructura-Actividad , Pez Cebra/genética , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA