Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 665: 711-719, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552586

RESUMEN

Zn anodes suffer from the formation of uncontrolled dendrites aggravated by the uneven electric field and the insulating by-product accumulation in aqueous zinc-ion batteries (AZIBs). Here, an effective strategy implemented by 1-butyl-3-methylimidazolium hydrogen sulfate (BMIHSO4) additive is proposed to synergistically tune the crystallographic orientation of zinc deposition and suppress the formation of zinc hydroxide sulfate for enhancing the reversibility on Zn anode surface. As a competing cation, BMI+ is proved to preferably adsorb on Zn-electrode compared with H2O molecules, which shields the "tip effect" and inhibits the Zn-deposition agglomerations to inducing the horizontal growth along Zn (002) crystallographic texture. Simultaneously, the protonated BMIHSO4 additives could remove the detrimental OH- in real-time to fundamentally eliminate the accumulation of 6Zn(OH)2·ZnSO4·4H2O and Zn4SO4(OH)6·H2O on Zn anode surface. Consequently, Zn anode exhibits an ultra-long cycling stability of one year (8762 h) at 0.2 mA cm-2/0.2 mAh cm-2, 3600 h at 2 mA cm-2/2 mAh cm-2 with a high plating cumulative capacity of 3.6 Ah cm-2, and a high average Coulombic efficiency of 99.6 % throughout 1000 cycles. This work of regulating Zn deposition texture combined with eliminating notorious by-products could offer a desirable way for stabilizing the Zn-anode/electrolyte interface in AZIBs.

2.
Dalton Trans ; 53(8): 3573-3578, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38284885

RESUMEN

Improving the fast-charging capabilities and energy storage capacity of electric vehicles presents a feasible strategy for mitigating the prevalent concern of range anxiety in the market. Nanostructure electrode materials play a crucial role in this process. However, the current method of preparation is arduous and yields restricted quantities. In view of this, we have devised an innovative approach that provides convenience and efficacy, facilitating the large-scale synthesis of CoS2 nanoparticles, which exhibited exceptional performance. When the current density was 1000 mA g-1, the discharging capacity reached 760 mAh g-1 after 400 cycles. Remarkably, even at an increased current density of 5000 mA g-1, the discharging capacity of CoS2 remained at 685.5 mAh g-1. The ultra-high performance could be attributed to the specific surface area, which minimized the diffusion distance of sodium-ions during the charging and discharging processes and mitigated the extent of structural damage. Our straightforward preparation techniques facilitate the mass production and present a novel approach for the development of cost-effective and high-performing anode materials for sodium-ion batteries.

3.
ACS Appl Mater Interfaces ; 6(10): 7471-8, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24779487

RESUMEN

MnFe2O4 nanoparticles have been synthesized on a large scale by a simple hydrothermal process in a wild condition, and the RGO/MnFe2O4 nanocomposites were also prepared under ultrasonic treatment based on the synthesized nanoparticles. The absorption properties of MnFe2O4/wax, RGO/MnFe2O4/wax and the RGO/MnFe2O4/PVDF (polyvinylidene fluoride) composites were studied; the results indicated that the RGO/MnFe2O4/PVDF composites show the most excellent wave absorption properties. The minimum reflection loss of RGO/MnFe2O4/PVDF composites with filler content of 5 wt % can reach -29.0 dB at 9.2 GHz, and the bandwidth of frequency less than -10 dB is from 8.00 to 12.88 GHz. The wave absorbing mechanism can be attributed to the dielectric loss, magnetic loss and the synergetic effect between RGO+MnFe2O4, RGO+PVDF and MnFe2O4+PVDF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA