Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Inflammopharmacology ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526770

RESUMEN

Sepsis, a life-threatening condition characterized by dysregulated immune responses, remains a significant clinical challenge. Myricanol, a natural compound, plays a variety of roles in regulating lipid metabolism, anti-cancer, anti-neurodegeneration, and it could act as an Sirtuin 1 (SIRT1) activator. This study aimed to explore the therapeutic potential and underlying mechanism of myricanol in the lipopolysaccharide (LPS)-induced sepsis model. In vivo studies revealed that myricanol administration significantly improved the survival rate of LPS-treated mice, effectively mitigating LPS-induced inflammatory responses in lung tissue. Furthermore, in vitro studies demonstrated that myricanol treatment inhibited the expression of pro-inflammatory cytokines, attenuated signal pathway activation, and reduced oxidative stress in macrophages. In addition, we demonstrated that myricanol selectively enhances SIRT1 activation in LPS-stimulated macrophages, and all of the protective effect of myricanol were reversed through SIRT1 silencing. Remarkably, the beneficial effects of myricanol against LPS-induced sepsis were abolished in SIRT1 myeloid-specific knockout mice, underpinning the critical role of SIRT1 in mediating myricanol's therapeutic efficacy. In summary, this study provides significant evidence that myricanol acts as a potent SIRT1 activator, targeting inflammatory signal pathways and oxidative stress to suppress excessive inflammatory responses. Our findings highlight the potential of myricanol as a novel therapeutic agent for the treatment of LPS-induced sepsis.

2.
Int J Biol Sci ; 20(5): 1602-1616, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481797

RESUMEN

Myocardial infarction causes cardiomyocyte loss, and depleted cardiomyocyte proliferative capacity after birth impinges the heart repair process, eventually leading to heart failure. This study aims to investigate the role of Poly(ADP-Ribose) Polymerase 1 (PARP1) in the regulation of cardiomyocyte proliferation and heart regeneration. Our findings demonstrated that PARP1 knockout impaired cardiomyocyte proliferation, cardiac function, and scar formation, while PARP1 overexpression improved heart regeneration in apical resection-operated mice. Mechanistically, we found that PARP1 interacts with and poly(ADP-ribosyl)ates Heat Shock Protein 90 Alpha Family Class B Member 1 (HSP90AB1) and increases binding between HSP90AB1 and Cell Division Cycle 37 (CDC37) and cell cycle kinase activity, thus activating cardiomyocyte cell cycle. Our results reveal that PARP1 promotes heart regeneration and cardiomyocyte proliferation via poly(ADP-ribosyl)ation of HSP90AB1 activating the cardiomyocyte cell cycle, suggesting that PARP1 may be a potential therapeutic target in treating cardiac injury.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Animales , Ratones , Proliferación Celular/genética , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
3.
Phytother Res ; 38(4): 1783-1798, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38323338

RESUMEN

Macrophage inflammation plays a central role during the development and progression of sepsis, while the regulation of macrophages by parthanatos has been recently identified as a novel strategy for anti-inflammatory therapies. This study was designed to investigate the therapeutic potential and mechanism of pimpinellin against LPS-induced sepsis. PARP1 and PAR activation were detected by western blot or immunohistochemistry. Cell death was assessed by flow cytometry and western blot. Cell metabolism was measured with a Seahorse XFe24 extracellular flux analyzer. C57, PARP1 knockout, and PARP1 conditional knock-in mice were used in a model of sepsis caused by LPS to assess the effect of pimpinellin. Here, we found that pimpinellin can specifically inhibit LPS-induced macrophage PARP1 and PAR activation. In vitro studies showed that pimpinellin could inhibit the expression of inflammatory cytokines and signal pathway activation in macrophages by inhibiting overexpression of PARP1. In addition, pimpinellin increased the survival rate of LPS-treated mice, thereby preventing LPS-induced sepsis. Further research confirmed that LPS-induced sepsis in PARP1 overexpressing mice was attenuated by pimpinellin, and PARP1 knockdown abolished the protective effect of pimpinellin against LPS-induced sepsis. Further study found that pimpinellin can promote ubiquitin-mediated degradation of PARP1 through RNF146. This is the first study to demonstrate that pimpinellin inhibits excessive inflammatory responses by promoting the ubiquitin-mediated degradation of PARP1.


Asunto(s)
Lipopolisacáridos , Metoxaleno , Sepsis , Animales , Ratones , Inflamación/metabolismo , Macrófagos , Metoxaleno/análogos & derivados , Ratones Endogámicos C57BL , Sepsis/inducido químicamente , Sepsis/tratamiento farmacológico , Ubiquitinación , Ubiquitinas/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-38363479

RESUMEN

PURPOSE: Angiogenesis involves in many pathological processes, including tumor metastasis, diabetic retinopathy, and rheumatoid arthritis. Therefore, identifying therapeutic drugs that target angiogenesis may be a promising strategy for disease treatment. Isoimperatorin is a furanocoumarin with anti-inflammatory and anti-microbial effects. However, the impacts of isoimperatorin on angiogenesis and its underlying mechanisms remain unclear. This study aimed to verify its effects on vascular endothelial growth factor (VEGF)-induced endothelial angiogenesis. METHODS: We employed various assays including 5-ethynyl-2'-deoxyuridine incorporation assay, transwell migration assay, wound healing assay, tube formation assay, and Western blot to evaluate the effects of isoimperatorin on angiogenesis in vitro. Additionally, we utilized Western blot and immunofluorescence analysis to examine the activation of vascular endothelial growth factor receptor (VEGFR) 2 and its downstream signaling pathways following isoimperatorin treatment. To further validate the anti-angiogenic effects of isoimperatorin in vivo, we conducted a matrigel plug assay and established an orthotopic tumor model. RESULTS: We demonstrated that pretreatment with isoimperatorin inhibited VEGF-induced endothelial cell proliferation, migration, and tube formation. Isoimperatorin also suppressed angiogenesis in vivo in a matrigel plug assay and in an orthotopic tumor model. Our results revealed that isoimperatorin exhibited anti-angiogenic effects via inhibiting VEGFR2 and its downstream signaling pathways activation. CONCLUSIONS: Our study showed that isoimperatorin suppressed angiogenesis by targeting the VEGFR2 signaling pathway and could be a potential therapeutic agent for targeting angiogenesis.

5.
J Transl Med ; 22(1): 74, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238754

RESUMEN

BACKGROUND: Angiogenesis is essential for tissue repair in ischemic diseases, relying on glycolysis as its primary energy source. Prolyl 4-hydroxylase subunit alpha 1 (P4HA1), the catalytic subunit of collagen prolyl 4-hydroxylase, is a glycolysis-related gene in cancers. However, its role in glycolysis-induced angiogenesis remains unclear. METHODS: P4HA1 expression was modulated using adenoviruses. Endothelial angiogenesis was evaluated through 5-ethynyl-2'-deoxyuridine incorporation, transwell migration, and tube formation assays in vitro. In vivo experiments measured blood flow and capillary density in the hindlimb ischemia (HLI) model. Glycolytic stress assays, glucose uptake, lactate production, and quantitative reverse transcription-polymerase chain reaction (RT-PCR) were employed to assess glycolytic capacity. Transcriptome sequencing, validated by western blotting and RT-PCR, was utilized to determine underlying mechanisms. RESULTS: P4HA1 was upregulated in endothelial cells under hypoxia and in the HLI model. P4HA1 overexpression promoted angiogenesis in vitro and in vivo, while its knockdown had the opposite effect. P4HA1 overexpression reduced cellular α-ketoglutarate (α-KG) levels by consuming α-KG during collagen hydroxylation. Downregulation of α-KG reduced the protein level of a DNA dioxygenase, ten-eleven translocation 2 (TET2), and its recruitment to the fructose-1,6-biphosphatase (FBP1) promoter, resulting in decreased FBP1 expression. The decrease in FBP1 enhanced glycolytic metabolism, thereby promoting endothelial angiogenesis. CONCLUSIONS: Hypoxia-induced endothelial P4HA1 overexpression enhanced angiogenesis by promoting glycolytic metabolism reprogramming through the P4HA1/α-KG/TET2/FBP1 pathway. The study's findings underscore the significance of P4HA1 in post-ischemic angiogenesis, suggesting its therapeutic potential for post-ischemic tissue repair.


Asunto(s)
Angiogénesis , Células Endoteliales , Animales , Humanos , Células Endoteliales/metabolismo , Colágeno/metabolismo , Hipoxia , Glucólisis , Prolil Hidroxilasas/metabolismo , Isquemia , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo
6.
Proteome Sci ; 21(1): 16, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821903

RESUMEN

The ability of the adult mammalian heart to regenerate can save the cardiac muscle from a loss of function caused by injury. Cardiomyocyte regeneration is a key aspect of research for the treatment of cardiovascular diseases. The mouse heart shows temporary regeneration in the first week after birth; thus, the newborn mouse heart is an ideal model to study heart muscle regeneration. In this study, proteomic analysis was used to investigate the differences in protein expression in the hearts of neonatal mice at days 1 (P1 group), 4 (P4 group), and 7 (P7 group). Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed changes in several groups of proteins, including the protein kinase A (PKA) signaling pathway. Moreover, it was found that PKA inhibitors and agonists regulated cardiomyocyte replication in neonatal mouse hearts. These findings suggest that PKA may be a target for the regulation of the cardiomyocyte cell cycle.

7.
Front Pharmacol ; 14: 1236892, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37663242

RESUMEN

[This corrects the article DOI: 10.3389/fphar.2021.758962.].

8.
Glob Med Genet ; 10(3): 263-270, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37771542

RESUMEN

Background Mutations in the mitochondrial transfer RNA (mt-tRNA) gene are a hotspot for mitochondrial DNA (mtDNA) mutations and are most common in mitochondrial diseases. Methods We identified the mt-tRNA gene 5816 A > G (m.5816 A > G) mutation in a 3-year-old child with dystonia who died. We performed clinical evaluation, genetic analysis, and biochemical investigation with mitochondrial function testing. Results Our patient was found to have dystonia with hyperlactatemia. Electroencephalogram findings were abnormal in children with numerous multifocal spikes, multispike, spikes and slow waves, slow waves and low amplitude fast waves, more pronounced in the occipital region bilaterally, and occurring continuously during sleep. One year later, the preexisting patient had seizures lasting 1 to 2 hours and subsequently died. mtDNA sequencing revealed that the proband, her mother, and her grandmother all carried the m.5816A > G mutation. Oxygen consumption rate (OCR) assays revealed that the proband's basal resting OCR, adenosine triphosphate production, proton leak, maximal respiration, and spare capacity OCR were all significantly lower compared with healthy children of the same age. Conclusion The present case demonstrates a childhood dystonia caused by a mt-tRNA gene 5816 A > G mutation, which has never been reported before. Our findings provide valuable new insights into the pathogenic mechanism and function of the m.5816A > G mutation.

9.
Metabolism ; 148: 155609, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37277059

RESUMEN

Obesity, as a worldwide healthcare problem, has attracted more and more attention. Here we identify a long non-coding RNA NRON, which is highly conserved across species, as an important regulator of glucose/lipid metabolism and whole-body energy expenditure. Depletion of Nron leads to metabolic benefits in DIO (diet-induced obesity) mice, including reduced body weight and fat mass, improved insulin sensitivity and serum lipid parameters, attenuated hepatic steatosis and enhanced adipose function. Mechanistically, Nron deletion improves hepatic lipid homeostasis via PER2/Rev-Erbα/FGF21 axis coupled with AMPK activation, and enhances adipose function via activating the process of triacylglycerol hydrolysis and fatty acid re-esterification (TAG/FA cycling) and coupled metabolic network. These interactive and integrative effects cooperatively account for a healthier metabolic phenotype in NKO (Nron knockout) mice. Genetic or pharmacological inhibition of Nron may have potential for future therapy of obesity.

10.
Cardiovasc Res ; 119(1): 183-194, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35352799

RESUMEN

AIMS: The heart undergoes pathological remodelling, featured by the hypertrophic growth of cardiomyocytes and increased cardiac fibrosis, under biomechanical stress such as haemodynamic overload. Ring Finger Protein 207 (RNF207) is an E3 ubiquitin ligase that is predominantly expressed in the heart, but its function remains elusive. In this study, we aimed to explore the role of RNF207 in the development of pathological cardiac hypertrophy and dysfunction. METHODS AND RESULTS: Transverse aortic constriction (TAC) surgery was performed on mice to induce cardiac hypertrophy. Cardiac function and remodelling were evaluated by echocardiography, histological assessment, and molecular analyses. Our data indicated that RNF207 overexpression (OE) exacerbated cardiac hypertrophy, fibrosis, and systolic dysfunction. In contrast, TAC-induced cardiac remodelling was profoundly blunted in RNF207 knockdown (KD) hearts. In line with the in vivo findings, RNF207 OE augmented, whereas RNF207 KD alleviated, phenylephrine-induced cardiomyocyte hypertrophy in vitro. Mechanistically, we demonstrated that RNF207 elicited detrimental effects by promoting K63-linked ubiquitination of TAK1-binding protein 1 (TAB1), which triggered the autophosphorylation of transforming growth factor-ß activated kinase 1 (TAK1) and the activation of downstream p38 and c-Jun N-terminal kinase (JNK)1/2 signalling pathways. In the TAB1-KD cardiomyocytes, RNF207-OE-induced cell hypertrophy was significantly attenuated, indicating that RNF207-induced hypertrophy is, at least in part, TAB1-dependent. CONCLUSIONS: This study demonstrates that RNF207 exacerbates pressure overload-induced cardiac hypertrophy and dysfunction via post-translational modification of TAB1.


Asunto(s)
Estenosis de la Válvula Aórtica , Transducción de Señal , Animales , Ratones , Estenosis de la Válvula Aórtica/metabolismo , Cardiomegalia/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo
11.
J Transl Med ; 20(1): 627, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36578083

RESUMEN

PURPOSE: Angiogenesis is involved in many pathological and physiological processes and is mainly driven by hypoxia. Karyopherin subunit alpha 2 (KPNA2), a member of the nuclear transport protein family, was recently shown to be induced by hypoxia in various types of tumours, so we aimed to investigate the role and mechanism of KPNA2 in angiogenesis under hypoxia. MATERIALS AND METHODS: After overexpression or knockdown of KPNA2 in human umbilical vein endothelial cells (HUVEC) by adenovirus vector infection, the tube formation, proliferation and migration of HUVEC under hypoxia were detected by tubule formation assay, 5-ethynyl-2'-deoxyuridine (EdU) staining and Transwell assay, respectively. After overexpression or knockdown of KPNA2 in a murine hindlimb ischemia model by local injection of purified adenovirus vector into the gastrocnemius muscle, blood flow changes were examined with a laser Doppler system. Changes in KPNA2-binding proteins under hypoxia were detected by immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP). The effect of KPNA2 on signal transducer and activator of transcription 3 (STAT3) was detected by Western blotting and quantitative RT‒PCR. RESULTS: KPNA2 was upregulated in the HUVEC hypoxia model and murine hindlimb ischemia model. Overexpression of KPNA2 increased the proliferation, migration and tube formation of HUVEC under hypoxia, while knockdown of KPNA2 reduced the proliferation, migration and tube formation of HUVEC. Overexpression of KPNA2 promoted the restoration of blood flow in the murine hindlimb ischemia model, while knockout of KPNA2 inhibited the restoration of blood flow in the murine hindlimb ischemia model. Mechanistically, hypoxia promoted the binding of STAT3 to KPNA2. Overexpression of KPNA2 promoted STAT3 phosphorylation and then upregulated vascular endothelial growth factor (VEGF) and angiopoietin 2(ANGPT2), whereas knockdown of KPNA2 inhibited STAT3 phosphorylation and then downregulated VEGF and ANGPT2. CONCLUSION: Our study demonstrates that hypoxia promotes the binding of STAT3 to KPNA2 and KPNA2 promotes angiogenesis under hypoxia by promoting the binding of STAT3 and JAK1 and regulating STAT3 phosphorylation.


Asunto(s)
Factor de Transcripción STAT3 , Factor A de Crecimiento Endotelial Vascular , Humanos , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor de Transcripción STAT3/metabolismo , Fosforilación , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Isquemia , Hipoxia/metabolismo , alfa Carioferinas
12.
Eur J Pharmacol ; 933: 175268, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36103933

RESUMEN

Endothelial cells (ECs) are vital regulators of inflammatory processes, there is the potential for inhibition of EC inflammation to be a therapeutic target in chronic inflammatory diseases. This study aimed to investigate the effect of 7-methoxyisoflavone (7-Mif) on endothelial inflammation. Our results showed that 7-Mif have no cytotoxicity on HUVECs. Pretreatment with 5 µM, 10 µM and 50 µM 7-Mif significantly reduced IL-1ß-induced ICAM-1 (28.1% ± 4.1%, 25.9 ± 2.5% and 32.0% ± 3.2%, respectively) and VCAM-1 (48.0% ± 5.6%, 40.1 ± 3.1% and 39.6% ± 3.1%, respectively) mRNA expression. And pretreatment with 10 µM and 50 µM 7-Mif significantly reduced IL-1ß-induced ICAM-1 (45.1% ± 4.4% and 33.6 ± 4.4%, respectively) and VCAM-1 (53.0% ± 3.7% and 53.7 ± 5.1%, respectively) protein levels. Furthermore, pretreatment with 50 µM 7-Mif inhibited monocyte-endothelial cell adhesion (50.2% ± 4.2%). Mechanistically, our results showed that 7-Mif reversed IL-1ß-induced NF-κB activation and p65 translocation to the nucleus, therefore inhibiting endothelial cell inflammation. In addition, we confirmed that 7-Mif 10 mg/kg and 20 mg/kg reduced LPS-induced ICAM-1 (47.3% ± 1.3% and 39.0% ± 3.2%, respectively) and VCAM-1 (56.5 ± 2.8% and 47.8 ± 4.3%, respectively) expression and attenuated inflammatory injury in mice. In conclusion, we showed the inhibitory effect of 7-Mif on endothelial inflammation by suppressing the expression of endothelial adhesion molecules and monocyte adhesion. Our data illustrated that 7-Mif could positively regulate the process of endothelial inflammation.


Asunto(s)
Flavonas/farmacología , Molécula 1 de Adhesión Intercelular , Molécula 1 de Adhesión Celular Vascular , Animales , Adhesión Celular , Células Cultivadas , Células Endoteliales , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Ratones , FN-kappa B/metabolismo , ARN Mensajero/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
13.
Front Cardiovasc Med ; 9: 921803, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966514

RESUMEN

Background: Familial hypercholesterolemia (FH) can elevate serum low-density lipoprotein cholesterol (LDL-C) levels, which can promote the progression of acute coronary syndrome (ACS). However, the effect of FH on the prognosis of ACS remains unclear. Methods: In this prospective cohort study, 223 patients with ACS having LDL-C ≥ 135.3 mg/dL (3.5 mmol/L) were enrolled and screened for FH using a multiple-gene FH panel. The diagnosis of FH was defined according to the ACMG/AMP criteria as carrying pathogenic or likely pathogenic variants. The clinical features of FH and the relationship of FH to the average 16.6-month risk of cardiovascular events (CVEs) were assessed. Results: The prevalence of molecularly defined FH in enrolled patients was 26.9%, and coronary artery lesions were more severe in patients with FH than in those without (Gensini score 66.0 vs. 28.0, respectively; P < 0.001). After lipid lowering, patients with FH still had significantly higher LDL-C levels at their last visit (73.5 ± 25.9 mg/dL vs. 84.7 ± 37.1 mg/dL; P = 0.013) compared with those without. FH increased the incidence of CVEs in patients with ACS [hazard ratio (HR): 3.058; 95% confidence interval (CI): 1.585-5.900; log-rank P < 0.001]. Conclusion: FH is associated with an increased risk of CVEs in ACS and is an independent risk factor for ACS. This study highlights the importance of genetic testing of FH-related gene mutations in patients with ACS.

14.
Front Pharmacol ; 13: 861319, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903325

RESUMEN

The abnormal neointima formation caused by the phenotypic switching of vascular smooth cells (VSMCs) into a synthetic state plays a key role in the pathogenesis of various vascular diseases, including atherosclerosis and postangioplasty restenosis. Theaflavin-3,3'-digallate (TF3) in black tea has been reported to exert antiinflammatory and anticancer effects, but its role in neointima formation remains unclear. Here, we delineated a remarkable effect of TF3 in suppressing neointima formation of VSMCs in vivo as well as the ability of primary rat aortic smooth cells (RASMCs) to proliferate and migrate in vitro. Further study confirmed that the effects of TF3 on PDGF-BB-induced RASMCs were due to reduced phosphorylation of PDGFRß, which led to the repression of downstream pathways. We concluded that TF3 may act as a repressor in the progression of neointima formation and serve as a potential therapeutic candidate for excessive phenotypic switching of VSMCs.

15.
Int J Infect Dis ; 122: 285-294, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35661688

RESUMEN

OBJECTIVES: The aim of this study was to investigate the dose-response relationship of admission fasting glucose (FBG) with corona virus disease 2019 (COVID-19) mortality and to further evaluate potential interactions of hyperglycemia with inflammation and hypercoagulation on COVID-19 outcomes. METHODS: This retrospective study included 2555 consecutively hospitalized patients with COVID-19, until death or discharge, in Wuhan Union hospital between January 1 and April 9, 2020. The poor early outcomes included admission to intensive care unit, intubation, and deaths occurring within 28 days. We used splines nested in Cox regression to visualize dose-response associations and generalized additive models to fit three-dimensional (3D) trend plots for joint effects of FBG with markers of inflammation and coagulation. RESULTS: J-shaped associations existed between hospitalized mortality or poor early outcomes and FBG with a nadir at 5 mmol/L, which were more evident in women. 3D plots demonstrated significant joint effect trends, and patients with hyperglycemia and high neutrophil-lymphocyte ratio, C-reactive protein, lactate dehydrogenase, procalcitonin, d-dimer, and interleukin-6 had 7.4-25.3-fold risks; the proportions of joint associations attributed to additive interactions reached 30% to 54%. CONCLUSIONS: FBG was associated with hospitalized mortality and poor early outcomes in a J-shaped manner, and a combination of hyperglycemia, inflammation, hypercoagulation, and cytokines conferred a dramatically higher risk.


Asunto(s)
COVID-19 , Hiperglucemia , Glucemia/metabolismo , COVID-19/complicaciones , Citocinas , Ayuno , Femenino , Glucosa , Humanos , Hiperglucemia/complicaciones , Inflamación/complicaciones , Pronóstico , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2
16.
Cell Death Dis ; 13(6): 571, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35760785

RESUMEN

The ß2-adrenergic receptor (ß2AR) is a G protein-coupled receptor (GPCR) that mediates the majority of cellular responses to external stimuli. Aberrant expression of ß2AR results in various pathophysiological disorders, including tumorigenesis, but little is known about its role in liver regeneration. This study aims to investigate the impact and the underlying mechanism of ß2AR in liver regeneration. Here, we found that ß2AR was upregulated during liver regeneration induced by 70% PH. Deletion of ß2AR in mice resulted in 62% mortality 2 days post-PH, decreased proliferative marker expression and impaired liver function throughout regeneration. Moreover, AAV8-mediated overexpression of ß2AR in hepatocytes accelerated the regeneration process and increased target gene expression. Mechanistically, ß2AR recruited G-protein-coupled receptor kinase 2 (GRK2) to the membrane and then formed a complex with c-met to transactivate c-met signaling, which triggered downstream extracellular regulated protein kinase (ERK) signaling activation and nuclear translocation. Inhibition of c-met with SU11274 or ERK with U0126 decreased ß2AR overexpression-induced hepatocyte proliferation. Our findings revealed that ß2AR might act as a critical mediator regulating liver regeneration by crosstalk with c-met and activation of ERK signaling.


Asunto(s)
Regeneración Hepática , Transducción de Señal , Animales , Ratones , Fosforilación , Transporte de Proteínas , Sulfonamidas/farmacología
17.
Eur J Pharmacol ; 919: 174805, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35151651

RESUMEN

Myocardial fibrosis is a concomitant bioprocess associated with many cardiovascular diseases (CVDs). Daidzein is an isoflavone that has been used for the treatment of CVDs. This study aimed to reveal its role in myocardial fibrosis. Our results indicate that daidzein had a nontoxic effect on cardiac fibroblasts and that TGF-ß1 and TGFßRI levels were gradually decreased by daidzein in a dose-dependent manner. In the current study, we show that daidzein significantly inhibited TGF-ß1-induced mRNA and protein expression of α-SMA, collagen I, and collagen III. Accordingly, immunofluorescence staining of α-SMA was performed. Daidzein also inhibited TGF-ß1-induced cardiac fibroblast proliferation and migration. Mechanistically, daidzein inhibited the TGF-ß/SMAD signaling pathway induced by TGF-ß1 in cardiac fibroblasts. Additionally, daidzein ameliorated MI-induced cardiac dysfunction and cardiac fibrosis in vivo. Based on these findings, we conclude that daidzein reduces TGF-ß1-induced cardiac fibroblast activation by partially regulating the TGF-ß1/SMAD2/3 signaling pathway.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Fibroblastos/efectos de los fármacos , Inhibidores de Crecimiento/farmacología , Isoflavonas/farmacología , Miocardio/patología , Animales , Enfermedades Cardiovasculares/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Fibrosis , Inhibidores de Crecimiento/administración & dosificación , Inhibidores de Crecimiento/uso terapéutico , Humanos , Isoflavonas/administración & dosificación , Isoflavonas/uso terapéutico , Masculino , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
18.
Front Pharmacol ; 12: 758962, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925018

RESUMEN

Endothelial cells are the fundamental components of blood vessels that regulate several physiological processes including immune responses, angiogenesis, and vascular tone. Endothelial dysfunction contributes to the development of various diseases such as acute lung injury, and endothelial inflammation is a vital part of endothelial dysfunction. Dauricine is an extract isolated from Menispermum dauricum DC, a traditional Chinese medical plant that can be used for pharyngitis. In this work, we found that IL-1ß-induced overexpression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin was inhibited by dauricine in primary human umbilical vein endothelial cells (HUVECs). Correspondingly, adhesion of human acute monocytic leukemia cell line (THP-1) to HUVECs was decreased by dauricine. Further studies showed that dauricine inhibited the activation of nuclear factor-κB (NF-κB) pathway in HUVECs stimulated with IL-1ß. In vivo, dauricine protected mice from lipopolysaccharide (LPS)-induced acute lung injury. In lung tissues, the activation of NF-κB pathway and the expression of its downstream genes (ICAM-1, VCAM-1, and E-selectin) were decreased by dauricine, consistent with what was found in vitro. In summary, we concluded that dauricine could alleviate endothelial inflammation by suppressing NF-κB pathway, which might serve as an effective candidate for diseases related with endothelial inflammation.

19.
FASEB J ; 35(10): e21951, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34551141

RESUMEN

Deciphering the molecular and cellular processes involved in foam cell formation is critical for us to understand the pathogenesis of atherosclerosis. Nuclear factor of activated T cells (NFAT) is a transcription factor originally identified as a key player in the differentiation of T cells and maturation of immune system. Nowadays it has been brought into attention that NFAT also regulates multiple pathophysiological processes and targeted intervention in NFAT may be effective in the treatment of some cardiovascular diseases. However, whether NFAT is involved in foam cell formation remains elusive. NFAT in human monocyte-derived macrophage was activated by ox-LDL and translocated from the cytoplasm to the nucleus. NFAT then directly bound to peroxisome proliferator-activated receptor γ (PPARγ) in the nucleus and negatively regulated its transcriptional activity. NFATc2 knockdown or NFAT inhibitor 11R-VIVIT increased cholesterol efflux (by activating PPARγ-LXRα-ABCA1 cascade) and reduced the uptake of modified lipoprotein (in a PPARγ-independent way) in macrophage, thus prevented foam cell formation. Besides, 11R-VIVIT also exerted a protective role in the development of atherosclerosis in western diet-fed ApoE-/- mice. These results suggest NFAT inhibition as a potential therapeutic strategy in atherosclerosis.


Asunto(s)
Aterosclerosis/prevención & control , Dieta/efectos adversos , Células Espumosas/citología , Factores de Transcripción NFATC/antagonistas & inhibidores , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Núcleo Celular/metabolismo , Colesterol/metabolismo , Humanos , Lipoproteínas LDL/farmacología , Macrófagos , Masculino , Ratones , Factores de Transcripción NFATC/metabolismo , PPAR gamma/antagonistas & inhibidores , PPAR gamma/metabolismo
20.
Lab Invest ; 101(8): 1026-1035, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33875791

RESUMEN

Angiogenesis is essential for various physiological and pathological processes. Previous studies have shown that miRNAs play an important role in blood vessel development and angiogenesis. Recent studies have suggested that miR-181b might be involved in the regulation of angiogenesis in tumors. However, whether miR-181b plays a role in angiogenesis in nontumor diseases is unclear. We found that miR-181b expression was downregulated in hypoxia-stimulated primary human umbilical vein endothelial cells (HUVECs) and a mouse hindlimb ischemia (HLI) model. Gain- and loss-of-function studies showed that a miR-181b mimic inhibited HUVEC migration and tube formation in vitro, and a miR-181b inhibitor had the opposite effects. In vivo, agomir-181b suppressed perfusion recovery in the HLI model and capillary density in a Matrigel plug assay, while perfusion recovery and capillary density were increased by injection of antagomir-181b. Mechanistically, we showed with a reporter assay that cellular communication network factor 1 (CCN1) was a direct target of miR-181b. Moreover, miR-181b suppressed angiogenesis at least in part by targeting CCN1 to inhibit the AMPK signaling pathway. Our research suggests that miR-181b suppresses angiogenesis by directly targeting CCN1, which provides new clues for pro-angiogenic treatment strategies.


Asunto(s)
Proteína 61 Rica en Cisteína/metabolismo , Miembro Posterior/irrigación sanguínea , MicroARNs/metabolismo , Animales , Células Cultivadas , Proteína 61 Rica en Cisteína/genética , Angiopatías Diabéticas/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Células Endoteliales de la Vena Umbilical Humana , Humanos , Isquemia/genética , Isquemia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , MicroARNs/genética , Músculo Esquelético/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA