Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(19): 12547-12559, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38695563

RESUMEN

Enantioselective sensing and separation represent formidable challenges across a diverse range of scientific domains. The advent of hybrid chiral membranes offers a promising avenue to address these challenges, capitalizing on their unique characteristics, including their heterogeneous structure, porosity, and abundance of chiral surfaces. However, the prevailing fabrication methods typically involve the initial preparation of achiral porous membranes followed by subsequent modification with chiral molecules, limiting their synthesis flexibility and controllability. Moreover, existing chiral membranes struggle to achieve coupled-accelerated enantioseparation (CAE). Here, we report a replacement strategy to controllably produce mesoscale and chiral silica-carbon (MCSC) hybrid membranes that comprise chiral pores by interfacial superassembly on a macroporous alumina (AAO) membrane, in which both ion- and enantiomers can be effectively and selectively transported across the membrane. As a result, the heterostructured hybrid membrane (MCSC/AAO) exhibits enhanced selectivity for cations and enantiomers of amino acids, achieving CAE for amino acids with an isoelectric point (pI) exceeding 7. Interestingly, the MCSC/AAO system demonstrates enhanced pH-sensitive enantioseparation compared to chiral mesoporous silica/AAO (CMS/AAO) with significant improvements of 78.14, 65.37, and 14.29% in the separation efficiency, separation factor, and permeate flux, respectively. This work promises to advance the synthesis of two or more component-integrated chiral nanochannels with multifunctional properties and allows a better understanding of the origins of the homochiral hybrid membranes.

2.
Analyst ; 149(13): 3522-3529, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787653

RESUMEN

Bioinspired nanochannel-based sensors have elicited significant interest because of their excellent sensing performance, and robust mechanical and tunable chemical properties. However, the existing designs face limitations due to material constraints, which hamper broader application possibilities. Herein, a heteromembrane system composed of a periodic mesoporous organosilica (PMO) layer with three-dimensional (3D) network nanochannels is constructed for glutathione (GSH) detection. The unique hierarchical pore architecture provides a large surface area, abundant reaction sites and plentiful interconnected pathways for rapid ionic transport, contributing to efficient and sensitive detection. Moreover, the thioether groups in nanochannels can be selectively cleaved by GSH to generate hydrophilic thiol groups. Benefiting from the increased hydrophilic surface, the proposed sensor achieves efficient GSH detection with a detection limit of 1.2 µM by monitoring the transmembrane ionic current and shows good recovery ranges in fetal bovine serum sample detection. This work paves an avenue for designing and fabricating nanofluidic sensing systems for practical and biosensing applications.


Asunto(s)
Glutatión , Límite de Detección , Compuestos de Organosilicio , Glutatión/química , Glutatión/análisis , Glutatión/sangre , Porosidad , Compuestos de Organosilicio/química , Animales , Bovinos , Técnicas Biosensibles/métodos , Membranas Artificiales , Técnicas Electroquímicas/métodos
3.
Artículo en Inglés | MEDLINE | ID: mdl-38661542

RESUMEN

In the field of sustainable chemistry, it is still a significant challenge to realize efficient light-powered space-confined catalysis and propulsion due to the limited solar absorption efficiency and the low mass and heat transfer efficiency. Here, novel semiconductor TiO2 nanorockets with asymmetric, hollow, mesoporous, and double-layer structures are successfully constructed through a facile interfacial superassembly strategy. The high concentration of defects and unique topological features improve light scattering and reduce the distance for charge migration and directed charge separation, resulting in enhanced light harvesting in the confined nanospace and resulting in enhanced catalysis and self-propulsion. The movement velocity of double-layered nanorockets can reach up to 10.5 µm s-1 under visible light, which is approximately 57 and 119% higher than that of asymmetric single-layered TiO2 and isotropic hollow TiO2 nanospheres, respectively. In addition, the double-layered nanorockets improve the degradation rate of the common pollutant methylene blue under sustainable visible light with a 247% rise of first-order rate constant compared to isotropic hollow TiO2 nanospheres. Furthermore, FEA simulations reveal and confirm the double-layered confined-space enhanced catalysis and self-propulsion mechanism.

4.
Analyst ; 149(5): 1464-1472, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38284827

RESUMEN

Copper ions (Cu2+), as a crucial trace element, play a vital role in living organisms. Thus, the detection of Cu2+ is of great significance for disease prevention and diagnosis. Nanochannel devices with an excellent nanoconfinement effect show great potential in recognizing and detecting Cu2+ ions. However, these devices often require complicated modification and treatment, which not only damages the membrane structure, but also induces nonspecific, low-sensitivity and non-repeatable detection. Herein, a 2D MXene-carboxymethyl chitosan (MXene/CMC) freestanding membrane with ordered lamellar channels was developed by a super-assembly strategy. The introduction of CMC provides abundant space charges, improving the nanoconfinement effect of the nanochannel. Importantly, the CMC can chelate with Cu2+ ions, endowing the MXene/CMC with the ability to detect Cu2+. The formation of CMC-Cu2+ complexes decreases the space charges, leading to a discernible variation in the current signal. Therefore, MXene/CMC can achieve highly sensitive and stable Cu2+ detection based on the characteristics of nanochannel composition. The linear response range for Cu2+ detection is 10-9 to 10-5 M with a low detection limit of 0.095 nM. Notably, MXene/CMC was successfully applied for Cu2+ detection in real water and fetal bovine serum samples. This work provides a simple, highly sensitive and stable detection platform based on the properties of the nanochannel composition.


Asunto(s)
Quitosano , Nitritos , Oligoelementos , Elementos de Transición , Cobre , Quitosano/química , Iones/química
5.
Nat Nanotechnol ; 19(1): 95-105, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37709950

RESUMEN

An effective nanotherapeutic transport from the vasculature to the tumour is crucial for cancer treatment with minimal side effects. Here we demonstrate that, in addition to the endothelial barrier, the tumour vascular basement membrane surrounding the endothelium acts as a formidable mechanical barrier that entraps nanoparticles (NPs) in the subendothelial void, forming perivascular NP pools. Breaking through this basement membrane barrier substantially increases NP extravasation. Using inflammation triggered by local hyperthermia, we develop a cooperative immunodriven strategy to overcome the basement membrane barrier that leads to robust tumour killing. Hyperthermia-triggered accumulation and inflammation of platelets attract neutrophils to the NP pools. The subsequent movement of neutrophils through the basement membrane can release the NPs entrapped in the subendothelial void, resulting in increased NP penetration into deeper tumours. We show the necessity of considering the tumour vascular basement membrane barrier when delivering nanotherapeutics. Understanding this barrier will contribute to developing more effective antitumour therapies.


Asunto(s)
Neoplasias , Humanos , Membrana Basal/patología , Neoplasias/patología , Neutrófilos , Inflamación/patología
6.
ACS Nano ; 17(15): 14871-14882, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37498219

RESUMEN

Micro-/nanomotors with advanced motion manipulation have recently received mounting interest; however, research focusing on the motion regulation strategies is still limited, as the simple construction and composition of micro-/nanomotors restrict the functionality. Herein, a multifunctional TiO2-SiO2-mesoporous carbon nanomotor is synthesized via an interfacial superassembly strategy. This nanomotor shows an asymmetric matchstick-like structure, with a head composed of TiO2 and a tail composed of SiO2. Mesoporous carbon is selectively grown on the surface of TiO2 through surface-charge-mediated assembly. The spatially anisotropic distribution of the photocatalytic TiO2 domain and photothermal carbon domain enables multichannel control of the motion, where the speed can be regulated by energy input and the directionality can be regulated by wavelength. Upon UV irradiation, the nanomotor exhibits a head-leading self-diffusiophoretic motion, while upon NIR irradiation, the nanomotor exhibits a tail-leading self-thermophoretic motion. As a proof-of-concept, this mechanism-switchable nanomotor is employed in wavelength-regulated targeted cargo delivery on a microfluidic chip. From an applied point of view, this nanomotor holds potential in biomedical applications such as active drug delivery and phototherapy. From a fundamental point of view, this research can provide insight into the relationship between the nanostructures, propulsion mechanisms, and motion performance.

7.
ACS Appl Mater Interfaces ; 15(27): 32552-32560, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37368865

RESUMEN

Light-responsive nanochannels have attracted extensive attention due to their noninvasive external field control and intelligent ion regulation. However, the limited photoresponsive current and the low photoelectric conversion efficiency still restrict their development. Here, a light-controlled nanochannel composed of 4-aminothiophenol and gold nanoparticles-modified mesoporous titania nanopillar arrays and alumina oxide (4-ATP-Au-MTI/AAO) is fabricated by the interfacial super-assembly strategy. Inspired by the process of electron transfer between photosystem I and photosystem II, the efficient electron transfer between TiO2, AuNPs, and 4-ATP under light is achieved by coupling the photoresponsive materials and functional molecules. Under illumination, 4-ATP is oxidized to p-nitrothiophenol (PNTP), which brings about changes in the wettability of the nanochannel, resulting in significant improvement (252.8%) of photoresponsive current. In addition, under the action of the reductant, the nanochannels can be restored to the initial dark state, enabling multiple reversible cycles. This work opens a new route for the fabrication of high-performance light-controlled nanochannels by coupling light-responsive materials and light-responsive molecules, which may guide the development of photoelectric conversion nanochannel systems.

8.
Biosens Bioelectron ; 222: 114985, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36493724

RESUMEN

Bioinspired artificial nanochannels have emerged as promising candidates for developing smart nanofluidic sensors due to their highly controllable size and surface functionality. However, little attention has been paid to the role of the outer surface of the nanochannels in enhancing the detection sensitivity. Herein, an asymmetric nanochannel-based responsive detection platform with ultrathin tannic acid modified mesoporous silica (TA-MS) layer and alumina oxide (AAO) thin film is prepared through super-assembly strategy. The functional TA-MS outer surface layer provides abundant phenolic groups on the nanochannels for ions and molecules transport, which paves the way for the development of heterochannels for label-free, reversible and highly sensitive dopamine (DA) detection based off of cation displacement effect. Notably, by engineering optimal thickness of the TA-MS, the sensing performance can be further improved. After optimization, the linear response ranges for DA detection are 0.001-1 µM, 1-10 µM and 10-200 µM with the detection limit of 0.1 nM. The prepared sensor exhibits stable reversibility after several detection cycles. In addition, this method was successfully applied for DA detection in fetal bovine serum sample. Theoretical calculations further prove the detection mechanism. This work opens a new horizon of using mesoporous materials to construct nanofluidic sensors for ultrasensitive small molecule detection and recognition.


Asunto(s)
Técnicas Biosensibles , Electricidad
9.
J Am Chem Soc ; 144(30): 13794-13805, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35830296

RESUMEN

In the context of sustainable development, chirality, especially chiral drugs, has attracted great interest in the pharmaceutical industry, yet the smart and sensitive separation of enantiomers still presents a major scientific challenge. Herein, inspired by supramolecular templating via chiral transcription nanoparticles, an artificial chiral nanochannel membrane with asymmetric structure, porosity, and abundant chiral surface is fabricated for smart and sensitive enantiomer recognition and separation. Constructed from chiral transcript mesoporous silica (CMS) super-assembled on a porous anode alumina oxide (AAO) support, the obtained heterostructured chiral membrane (CMS/AAO) exhibits enhanced enantioseparation (approximately 170% compared to the supramolecular-templated nanoparticles) among a series of amino acids with various isoelectric points (PIs). Especially for amino acids with a PI greater than 7, the couple-accelerated enantioseparation (CAE) can be achieved for the first time. Further analysis using an osmotic energy conversion test and simulations based on the Poisson-Nernst-Planck (PNP) equations confirm that the heterostructure and charge polarity are the key to achieve chiral amino acids and ion separation. We expect this work will inspire the development of multifunctional membrane systems for more sustainable and energy-efficient enantioseparation.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Aminoácidos , Porosidad , Dióxido de Silicio/química , Estereoisomerismo
10.
J Am Chem Soc ; 144(17): 7778-7789, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35413189

RESUMEN

Meticulous surface patterning of nanoparticles with anisotropic patches as analogs of functional groups offers fascinating potential in many fields, particularly in controllable materials assembly. However, patchy colloids generally evolve into high-symmetry solid structures, mainly because the assembly interactions arise between patches via patch-to-patch recognition. Here, we report an assembly concept, that is, a soft patch, which enables selective and directional fusion of liquid droplets for producing highly asymmetrical hollow nanospacecrafts. Our approach enables precise control of hollow nanoparticle diameters by manipulating droplet fusion regions. By controlling the patch number, more orientations are accessible to droplet fusion, allowing for increased degrees of complexity of hollow self-assemblies. The versatility and curvature-selective growth of this strategy are demonstrated on three nonspherical nanoparticles, enabling the creation of highly asymmetric nanospacecrafts. By patterning Au-core Ag-shell nanorods, the nanospacecraft can be programmed in response to either H2O2 or near-infrared light, exhibiting dual-mode response behavior with a 208% increase in the diffusion coefficient in both modes compared with other nanoscale low-asymmetry active materials. Overall, these findings are a significant step toward designing new patch interactions for materials self-assembly for creating complex hollow colloids and functional nanodevices that are otherwise inaccessible.


Asunto(s)
Nanopartículas , Nanotubos , Anisotropía , Coloides/química , Peróxido de Hidrógeno , Nanotubos/química
11.
ACS Nano ; 16(5): 7993-8004, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35394286

RESUMEN

Hydrogen evolution reaction (HER) through water splitting is a potential technology to realize the sustainable production of hydrogen, yet the tardy water dissociation and costly Pt-based catalysts inhibit its development. Here, a trapping-bonding strategy is proposed to realize the superassembly of surface-enriched Ru nanoclusters on a phytic acid modified nitrogen-doped carbon framework (denoted as NCPO-Ru NCs). The modified framework has a high affinity to metal cations and can trap plenty of Ru ions. The trapped Ru ions are mainly distributed on the surface of the framework and can form Ru nanoclusters at 50 °C with the synergistic effect of vacancies and phosphate groups. By adjusting the content of phytic acid, surface-enriched Ru nanoclusters with adjustable distribution and densities can be obtained. Benefiting from the adequate exposure of the active sites and dense distribution of ultrasmall Ru nanoclusters, the obtained NCPO-Ru NCs catalyst can effectively drive HER in alkaline electrolytes and show an activity (at overpotential of 50 mV) about 14.3 and 9.6 times higher than that of commercial Ru/C and Pt/C catalysts, respectively. Furthermore, the great performance in solar to hydrogen generation through water splitting provides more flexibility for wide applications of NCPO-Ru NCs.

12.
Nano Lett ; 22(7): 2889-2897, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35315667

RESUMEN

Atomically dispersed catalysts are a new type of material in the field of catalysis science, yet their large-scale synthesis under mild conditions remains challenging. Here, a general synergistic capture-bonding superassembly strategy to obtain atomically dispersed Pt (Ru, Au, Pd, Ir, and Rh)-based catalysts on micropore-vacancy frameworks at a mild temperature of 60 °C is reported. The precise capture via narrow pores and the stable bonding of vacancies not only simplify the synthesis process of atomically dispersed catalysts but also realize their large-scale preparation at mild temperature. The prepared atomically dispersed Pt-based catalyst possesses a promising electrocatalytic activity for hydrogen evolution, showing an activity (at overpotential of 50 mV) about 21.4 and 20.8 times higher than that of commercial Pt/C catalyst in 1.0 M KOH and 0.5 M H2SO4, respectively. Besides, the extremely long operational stability of more than 100 h provides more potential for its practical application.

13.
ACS Cent Sci ; 8(3): 361-369, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35350602

RESUMEN

Stimuli-responsive nanochannels have attracted extensive attention in various fields owing to their precise regulation ability of ionic transportation. However, the poor controllability and functionality as well as responding to only one type of external stimulus still impede the development of the smart nanochannels. Here, we demonstrate a novel heterogeneous membrane composed of ordered mesoporous titania nanopillar-arrays/anodic aluminum oxide (MTI/AAO) using an interfacial superassembly strategy, which can achieve intelligent light and pH multimodulation ion transport. The MTI/AAO membranes are generated through the self-assembly of templates, followed by interfacial superassembly of micelles on AAO, and then the nanostructure and phase transformation of titania. The presence of the MTI layer with anatase crystal endows the heterogeneous membrane with an excellent light-responsive current density of 219.2 µA·cm-2, which is much higher than that of a reported traditional light-responsive nanofluidic device. Furthermore, the MTI/AAO heterogeneous membranes with an asymmetric structure exhibit excellent rectification performance. Moreover, pH-regulated surface charge polarity leads to a reversal of current rectification polarity. This light and pH multiresponsive membrane realizes efficient, sensitive, and stable ion regulation, extending the traditional nanochannel from single modulation to smart multimodulation.

14.
ACS Appl Mater Interfaces ; 14(13): 15517-15528, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35323010

RESUMEN

Mechanism-switchable nanomotors are expected to exhibit high adaptability and wide applicability. Herein, for the first time, we report a flask-shaped carbon@Pt@fatty-acid nanomotor with a light-induced switch between nonionic self-diffusiophoresis and bubble propulsion. This nanomotor is fabricated through superassembly of platinum nanoparticles on the surface of carbon nanobottles, and fatty acids are infused into the cavity of carbon nanobottles to serve as a light-sensitive switch. Such a nanomotor can be propelled via catalytic decomposition of H2O2 by platinum nanoparticles, exhibiting self-diffusiophoresis with opening-forward migration. Upon 980 nm laser irradiation, the fatty acids melt due to the photothermal effect and are released from the cavity, switching the dominant operational mechanism to bubble propulsion with bottom-forward migration. Compared with self-diffusiophoresis, bubble propulsion shows higher mobility and better directionality due to the hindered self-rotation. Simulation results further reveal that the confinement effect of the cavity, which facilitates the nucleation of nanobubbles, leads to the switch to bubble propulsion. This study offers an insight into the relationship between nanostructures, fundamental nanomotor operational mechanisms, and apparent propulsion performance, as well as provides a novel strategy for the regulation of movement, which is instructive for both the design and applications of nanomotors.

15.
J Am Chem Soc ; 144(4): 1634-1646, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35014789

RESUMEN

The rational design and controllable synthesis of hollow nanoparticles with both a mesoporous shell and an asymmetric architecture are crucially desired yet still significant challenges. In this work, a kinetics-controlled interfacial super-assembly strategy is developed, which is capable of preparing asymmetric porous and hollow carbon (APHC) nanoparticles through the precise regulation of polymerization and assembly rates of two kinds of precursors. In this method, Janus resin and silica hybrid (RSH) nanoparticles are first fabricated through the kinetics-controlled competitive nucleation and assembly of two precursors. Specifically, silica nanoparticles are initially formed, and the resin nanoparticles are subsequently formed on one side of the silica nanoparticles, followed by the co-assembly of silica and resin on the other side of the silica nanoparticles. The APHC nanoparticles are finally obtained via high-temperature carbonization of RSH nanoparticles and elimination of silica. The erratic asymmetrical, hierarchical porous and hollow structure and excellent photothermal performance under 980 nm near-infrared (NIR) light endow the APHC nanoparticles with the ability to serve as fuel-free nanomotors with NIR-light-driven propulsion. Upon illumination by NIR light, the photothermal effect of the APHC shell causes both self-thermophoresis and jet driving forces, which propel the APHC nanomotor. Furthermore, with the assistance of phase change materials, such APHC nanoparticles can be employed as smart vehicles that can achieve on-demand release of drugs with a 980 nm NIR laser. As a proof of concept, we apply this APHC-based therapeutic system in cancer treatment, which shows improved anticancer performance due to the synergy of photothermal therapy and chemotherapy. In brief, this kinetics-controlled approach may put forward new insight into the design and synthesis of functional materials with unique structures, properties, and applications by adjusting the assembly rates of multiple precursors in a reaction system.

16.
Analyst ; 147(4): 652-660, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35060575

RESUMEN

Biomimetic nacre-like membranes composed of two-dimensional lamellar sheets and one-dimensional nanofibers exhibit high mechanical strength and excellent stability. Thus, they show substantial application in the field of membrane science and water purification. However, the limited techniques for the assembly of two-dimensional lamellar membranes and one-dimensional nanofibers hamper their development and application. Herein, we developed a nacre-like and freestanding graphene oxide/aramid fiber membrane with abundant T-mode subnanochannels by introducing aramid fibers into graphene oxide interlamination via the super-assembly interaction between graphene oxide and aramid fibers. Benefiting from the presence of stable and adjustable sub-nanometer-size ion transport channels, the graphene oxide/aramid fiber composite membrane exhibited excellent mono/divalent ion selectivity of 3.51 (K+/Mg2+), which is superior to that of the pure graphene oxide membrane. The experimental results suggest that the mono/divalent ion selectivity is ascribed to the subnanochannels in the graphene oxide/aramid fiber composite membrane, electrostatic repulsion interaction and strong interaction between the divalent metal ion and carboxyl groups. Moreover, the composite membrane exhibited remarkable charge selectivity with a K+/Cl- ratio of up to ∼158, indicating that this graphene oxide/aramid fiber composite membrane has great potential for application in energy conversion. This study provides an avenue to prepare freestanding and nacre-like composite membranes with abundant T-mode ion transport channels for ion recognition and energy conversion, which also shows great application prospects in the field of membrane science and water purification.

17.
Angew Chem Int Ed Engl ; 61(12): e202200240, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35085410

RESUMEN

Hollow nanoparticles featuring tunable structures with spatial and chemical specificity are of fundamental interest. However, it remains a significant challenge to design and synthesize asymmetric nanoparticles with controllable topological hollow architecture. Here, a versatile kinetics-regulated cooperative polymerization induced interfacial selective superassembly strategy is demonstrated to construct a series of asymmetric hollow porous composites (AHPCs) with tunable diameters, architectures and components. The size and number of patches on Janus nanoparticles can be precisely manipulated by the precursor and catalyst content. Notably, AHPCs exhibit excellent photothermal conversion performance under the irradiation of a near infrared (NIR) laser. Thus, AHPCs are utilized as NIR light-triggered nanovehicles and cargos can be controllably released. In brief, this versatile superassembly approach offers a streamlined and powerful toolset to design diverse asymmetric hollow porous composites.

18.
Anal Chem ; 94(5): 2589-2596, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-34962369

RESUMEN

Tyrosinase (TYR) is a multifunctional copper-containing enzyme that plays a critical role in the biosynthetic pathway of melanin. Thus, the detection of TYR activity possesses vast importance from clinical diagnosis to the food industry. However, most TYR detection methods are expensive, complicated, and time-consuming. Herein, a functional nanofluidic heterochannel composed of an ultrathin tyramine-modified mesoporous silica layer (Tyr-MS) and alumina oxide (AAO) arrays is constructed by an interfacial super-assembly method. The heterochannel with plenty of enzyme catalytic sites for TYR provides the response of the ion current signal against TYR concentrations. Introducing enzymatic reaction paves the way for the heterochannel to achieve label-free, selective, specific detection of TYR. Notably, a highly sensitive detection of TYR with a limit of 2 U mL-1 was obtained by optimizing the modified conditions. Detailed investigations and theoretical calculations further reveal the mechanism for the detection performance. This work provides a simple, low-cost, quick response, and label-free platform based on functional nanofluidic devices for enzyme-sensing technologies.


Asunto(s)
Monofenol Monooxigenasa , Óxidos , Óxido de Aluminio , Monofenol Monooxigenasa/metabolismo , Dióxido de Silicio , Tiramina
19.
Angew Chem Int Ed Engl ; 60(50): 26167-26176, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34605141

RESUMEN

Nanofluidic devices have been widely used for diode-like ion transport and salinity gradients energy conversion. Emerging reverse electrodialysis (RED) nanofluidic systems based on nanochannel membrane display great superiority in salinity gradient energy harvesting. However, the imbalance between permeability and selectivity limits their practical application. Here, a new mesoporous carbon-silica/anodized aluminum (MCS/AAO) nanofluidic device with enhanced permselectivity for temperature- and pH-regulated energy generation was obtained by interfacial super-assembly method. A maximum power density of 5.04 W m-2 is achieved, and a higher performance can be obtained by regulating temperature and pH. Theoretical calculations are further implemented to reveal the mechanism for ion rectification, ion selectivity and energy conversion. Results show that the MCS/AAO hybrid membrane has great superiority in diode-like ion transport, temperature- and pH-regulated salinity gradient energy conversion.

20.
ACS Nano ; 15(7): 11451-11460, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-33861933

RESUMEN

Ligand-mediated interface control has been broadly applied as a powerful tool in constructing sophisticated nanocomposites. However, the resultant morphologies are usually limited to solid structures. Now, a facile spatially controllable ligand-mediated superassembly strategy is explored to construct monodispersed, asymmetric, hollow, open Au-silica (SiO2) nanotadpoles (AHOASTs). By manipulating the spatial density of ligands, the degree of diffusion of silica can be precisely modulated; thus the diameters of the cavity can be continuously tuned. Due to their highly anisotropic, hollow, open morphologies, we construct a multicompartment nanocontainer with enzymes held and isolated inside the cavity. Furthermore, the resulting enzyme-AHOASTs are used as biocompatible smart H2O2-sensitive nanoswimmers and demonstrate a higher diffusion coefficient than other nanoscaled swimmers. We believe that this strategy is critical not only in designing sophisticated hollow nanosystem but also in providing great opportunities for applications in nanomaterial assembly, catalysis, sensors, and nanoreactors.


Asunto(s)
Nanocompuestos , Dióxido de Silicio , Dióxido de Silicio/química , Peróxido de Hidrógeno , Ligandos , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...