Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 261: 122060, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39018903

RESUMEN

Microplastics (MPs), discovered in oceans, lakes, and rivers, can infiltrate the food chain through ingestion by organisms, potentially posing health risks. Our research is the first to study the composition and distribution of MPs in Bosten Lake's sediment. In May, the average abundance of MPs was 0.95±0.72 particles per 10 gs, and in October, it was 0.90±0.61 particles per 10 gs. Bohu Town had the highest MP abundance, with 1.75±0.35 particles per 10 gs in spring and 2 ± 0 particles per 10 gs in autumn. In May, 53 % of the MPs were transparent, while in October, black MPs constituted 58 %. The predominant morphology was fibrous, accounting for 61 % of the total. MPs in the size range of 0.2-1 mm made up 91 % and 66 % of the total in May and October, respectively. The most common types of MPs in May were polyethylene terephthalate (PET) at 40 % and polyethylene (PE) at 26 %. In October, PET was the most prevalent at 71 %, followed by poly(ether-ether-ketone)(PEEK) at 11 %. Certain microbial taxa, such as Actinobacteriota, Pseudomonas, and Vicinamibacteraceae, associated with MP degradation or complex carbon chain breakdown, were notably enriched in sediment areas with high MP concentrations. A significant positive correlation was observed between the abundance of MPs in sediments and Actinobacteriota. Additionally, the abundance of Thiobacillus, Ca.competibacter, and other bacteria involved in soil element cycling showed a significant positive correlation with the organic matter content in the sediments. Anaerobic bacteria like Thermoanaerobacterium displayed a significant positive correlation with water depth. Our study reveals the presence, composition, and distribution of MPs in Bosten Lake's sediments, shedding light on their potential ecological impact.


Asunto(s)
Sedimentos Geológicos , Microbiota , Microplásticos , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Microplásticos/metabolismo , Lagos/química , Lagos/microbiología , Boston , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Color , Contaminantes del Agua/metabolismo , Monitoreo del Ambiente
2.
Int J Biol Macromol ; 267(Pt 1): 131407, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582463

RESUMEN

Succinate dehydrogenase (SDH) is an important inner mitochondrial membrane-bound enzyme involved in redox reactions during the tricarboxylic acid cycle. Therefore, a series of novel chitosan derivatives were designed and synthesized as potential microbicides targeting SDH and precisely characterized by FTIR, 1H NMR and SEM. Their antifungal and antibacterial activities were evaluated against Botrytis cinerea, Fusarium graminearum, Staphylococcus aureus and Escherichia coli. The bioassays revealed that these chitosan derivatives exerted significant antifungal effects, with four of the compounds achieving 100 % inhibition of Fusarium graminearum merely at a concentration of 0.5 mg/mL. Additionally, CSGDCH showed 79.34 % inhibition of Botrytis cinerea at a concentration of 0.1 mg/mL. In vitro antibacterial tests revealed that CSGDCH and CSGDBH have excellent Staphylococcus aureus and Escherichia coli inhibition with MICs of 0.0156 mg/mL and 0.03125 mg/mL, respectively. Molecular docking studies have been carried out to explore the binding energy and binding mode of chitosan and chitosan derivatives with SDH. The analyses indicated that chitosan derivatives targeted the active site of the SDH protein more precisely, disrupting its normal function and ultimately repressing the growth of microbial cells. Furthermore, the chitosan derivatives were also evaluated biologically for antioxidation, and all of these compounds had a greater degree of reducing power, superoxide radical, hydroxyl radical and DPPH-radical scavenging activity than chitosan. This research has the potential for the development of agricultural antimicrobial agents.


Asunto(s)
Antioxidantes , Quitosano , Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , Bases de Schiff , Succinato Deshidrogenasa , Quitosano/química , Quitosano/farmacología , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/química , Bases de Schiff/química , Bases de Schiff/farmacología , Bases de Schiff/síntesis química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Glicina/química , Glicina/análogos & derivados , Glicina/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Staphylococcus aureus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Escherichia coli/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/síntesis química , Fusarium/efectos de los fármacos , Botrytis/efectos de los fármacos , Técnicas de Química Sintética
3.
Mar Drugs ; 21(12)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38132927

RESUMEN

A total of 16 novel carboxymethyl chitosan derivatives bearing quinoline groups in four classes were prepared by different synthetic methods. Their chemical structures were confirmed by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and elemental analysis. The antioxidant experiment results in vitro (including DPPH radical scavenging ability, superoxide anion radical scavenging ability, hydroxyl radical scavenging ability, and ferric reducing antioxidant power) demonstrated that adding quinoline groups to chitosan (CS) and carboxymethyl chitosan (CMCS) enhanced the radical scavenging ability of CS and CMCS. Among them, both N, O-CMCS derivatives and N-TM-O-CMCS derivatives showed DPPH radical scavenging over 70%. In addition, their scavenging of superoxide anion radicals reached more than 90% at the maximum tested concentration of 1.6 mg/mL. Moreover, the cytotoxicity assay was carried out on L929 cells by the MTT method, and the results indicated that all derivatives showed no cytotoxicity (cell viability > 75%) except O-CMCS derivative 1a, which showed low cytotoxicity at 1000 µg/mL (cell viability 50.77 ± 4.67%). In conclusion, the carboxymethyl chitosan derivatives bearing quinoline groups showed remarkable antioxidant ability and weak cytotoxicity, highlighting their potential use in food and medical applications.


Asunto(s)
Quitosano , Quinolinas , Antioxidantes/farmacología , Antioxidantes/química , Superóxidos/química , Quitosano/química , Espectroscopía de Resonancia Magnética , Espectroscopía Infrarroja por Transformada de Fourier , Quinolinas/farmacología
4.
BMC Genomics ; 24(1): 660, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919661

RESUMEN

BACKGROUND: Milk production traits are complex traits with vital economic importance in the camel industry. However, the genetic mechanisms regulating milk production traits in camels remain poorly understood. Therefore, we aimed to identify candidate genes and metabolic pathways that affect milk production traits in Bactrian camels. METHODS: We classified camels (fourth parity) as low- or high-yield, examined pregnant camels using B-mode ultrasonography, observed the microscopic changes in the mammary gland using hematoxylin and eosin (HE) staining, and used RNA sequencing to identify differentially expressed genes (DEGs) and pathways. RESULTS: The average standard milk yield over the 300 days during parity was recorded as 470.18 ± 9.75 and 978.34 ± 3.80 kg in low- and high-performance camels, respectively. Nine female Junggar Bactrian camels were subjected to transcriptome sequencing, and 609 and 393 DEGs were identified in the low-yield vs. high-yield (WDL vs. WGH) and pregnancy versus colostrum period (RSQ vs. CRQ) comparison groups, respectively. The DEGs were compared with genes associated with milk production traits in the Animal Quantitative Trait Loci database and in Alashan Bactrian camels, and 65 and 46 overlapping candidate genes were obtained, respectively. Functional enrichment and protein-protein interaction network analyses of the DEGs and candidate genes were conducted. After comparing our results with those of other livestock studies, we identified 16 signaling pathways and 27 core candidate genes associated with maternal parturition, estrogen regulation, initiation of lactation, and milk production traits. The pathways suggest that emerged milk production involves the regulation of multiple complex metabolic and cellular developmental processes in camels. Finally, the RNA sequencing results were validated using quantitative real-time PCR; the 15 selected genes exhibited consistent expression changes. CONCLUSIONS: This study identified DEGs and metabolic pathways affecting maternal parturition and milk production traits. The results provides a theoretical foundation for further research on the molecular mechanism of genes related to milk production traits in camels. Furthermore, these findings will help improve breeding strategies to achieve the desired milk yield in camels.


Asunto(s)
Camelus , Leche , Animales , Embarazo , Femenino , Camelus/genética , Lactancia/genética , Parto , Perfilación de la Expresión Génica
5.
Microsyst Nanoeng ; 9: 110, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37701521

RESUMEN

This paper presents a surface acoustic wave (SAW) sensor based on coplanar integrated Langasite (LGS) that is fabricated using wet etching, high-temperature bonding, and ion beam etching (IBE) processes. The miniaturized multiparameter temperature‒pressure-humidity (TPH) sensor used the MXene@MoS2@Go (MMG) composite to widen the humidity detection range and improve the humidity sensitivity, including a fast response time (3.18 s) and recovery time (0.94 s). The TPH sensor was shown to operate steadily between 25-700 °C, 0-700 kPa, and 10-98% RH. Coupling issues among multiple parameters in complex environments were addressed by decoupling the Δf-temperature coupling factor to improve the accuracy. Therefore, this work can be applied to simultaneous measurements of several environmental parameters in challenging conditions.

6.
Front Vet Sci ; 10: 1196950, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342620

RESUMEN

Introduction: The demand for camel milk, which has unique therapeutic properties, is increasing. The mammary gland is the organ in mammals responsible for the production and quality of milk. However, few studies have investigated the genes or pathways related to mammary gland growth and development in Bactrian camels. This study aimed to compare the morphological changes in mammary gland tissue and transcriptome expression profiles between young and adult female Bactrian camels and to explore the potential candidate genes and signaling pathways related to mammary gland development. Methods: Three 2 years-old female camels and three 5 years-old adult female camels were maintained in the same environment. The parenchyma of the mammary gland tissue was sampled from the camels using percutaneous needle biopsy. Morphological changes were observed using hematoxylin-eosin staining. High-throughput RNA sequencing was performed using the Illumina HiSeq platform to analyze changes in the transcriptome between young and adult camels. Functional enrichment, pathway enrichment, and protein-protein interaction networks were also analyzed. Gene expression was verified using quantitative real-time polymerase chain reaction (qRT-PCR). Results: Histomorphological analysis showed that the mammary ducts and mammary epithelial cells in adult female camels were greatly developed and differentiated from those in young camels. Transcriptome analysis showed that 2,851 differentially expressed genes were obtained in the adult camel group compared to the young camel group, of which 1,420 were upregulated, 1,431 were downregulated, and 2,419 encoded proteins. Functional enrichment analysis revealed that the upregulated genes were significantly enriched for 24 pathways, including the Hedgehog signaling pathway which is closely related to mammary gland development. The downregulated genes were significantly enriched for seven pathways, among these the Wnt signaling pathway was significantly related to mammary gland development. The protein-protein interaction network sorted the nodes according to the degree of gene interaction and identified nine candidate genes: PRKAB2, PRKAG3, PLCB4, BTRC, GLI1, WIF1, DKK2, FZD3, and WNT4. The expression of fifteen genes randomly detected by qRT-PCR showed results consistent with those of the transcriptome analysis. Discussion: Preliminary findings indicate that the Hedgehog, Wnt, oxytocin, insulin, and steroid biosynthesis signaling pathways have important effects on mammary gland development in dairy camels. Given the importance of these pathways and the interconnections of the involved genes, the genes in these pathways should be considered potential candidate genes. This study provides a theoretical basis for elucidating the molecular mechanisms associated with mammary gland development and milk production in Bactrian camels.

7.
Nat Prod Res ; : 1-6, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37194666

RESUMEN

Two new compounds, cladospolides I (1) and J (2), together with two new naturally occurring ones, methyl 11-hydroxy-4-oxododecanoate (3) and 11-hydroxy-4-oxododecanoic acid (4), were isolated from the culture extract of the cold-seep sediment-derived fungus Cladosporium cladosporioides 8-1. Their structures and configurations were established by analysis of 1D/2D NMR, MS, ECD, and specific optical rotation data. Compound 3 was possibly formed by methyl esterification of 4 during the purification process due to the utilization of methanol. All compounds were evaluated for inhibition of four marine phytoplankton species and five marine-derived bacteria.

8.
Rev Sci Instrum ; 94(3): 034715, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37012741

RESUMEN

This paper proposes a wireless passive measurement system that supports real-time signal acquisition, multi-parameter crosstalk demodulation, and real-time storage and calculation. The system consists of a multi-parameter integrated sensor, an RF signal acquisition and demodulation circuit, and a multi-functional host computer software. The sensor signal acquisition circuit uses a wide frequency detection range (25 MHz-2.7 GHz) to meet the resonant frequency range of most sensors. Since the multi-parameter integrated sensors are affected by multiple factors, such as temperature and pressure, there will be interference between them, so the algorithm for multi-parameter decoupling is designed, and the software for sensor calibration and real-time demodulation is developed to improve the usability and flexibility of the measurement system. In the experiment, temperature and pressure dual-reference integrated surface acoustic wave sensors in the condition of 25-550 °C and 0-700 kPa are used for testing and verification. After experimental testing, the swept source of the signal acquisition circuit can meet the output accuracy in a wide frequency range, and the detection result of the sensor dynamic response is consistent with that of the network analyzer, with a maximum test error of 0.96%. Furthermore, the maximum temperature measurement error is 1.51%, and the maximum pressure measurement error is 5.136%. These results indicate that the proposed system has good detection accuracy and demodulation performance, and it can be used for multi-parameter wireless real-time detection and demodulation.

9.
Micromachines (Basel) ; 13(6)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35744526

RESUMEN

In this paper, we present the design of an integrated temperature and strain dual-parameter sensor based on surface acoustic waves (SAWs). First, the COMSOL Multiphysics simulation software is used to determine separate frequencies for multiple sensors to avoid interference from their frequency offsets caused by external physical quantity changes. The sensor consists of two parts, a temperature-sensitive unit and strain-sensitive unit, with frequencies of 94.97 MHz and 90.05 MHz, respectively. We use standard photolithography and ion beam etching technology to fabricate the SAW temperature-strain dual-parameter sensor. The sensing performance is tested in the ranges 0-250 °C and 0-700 µÔ‘. The temperature sensor monitors the ambient temperature in real time, and the strain sensor detects both strain and temperature. By testing the response of the strain sensor at different temperatures, the strain and temperature are decoupled through the polynomial fitting of the intercept and slope. The relationship between the strain and the frequency of the strain-sensitive unit is linear, the linear correlation is 0.98842, and the sensitivity is 100 Hz/µÔ‘ at room temperature in the range of 0-700 µÔ‘. The relationship between the temperature and the frequency of the temperature-sensitive unit is linear, the linearity of the fitting curve is 0.99716, and the sensitivity is 7.62 kHz/°C in the range of 25-250 °C. This sensor has potential for use in closed environments such as natural gas or oil pipelines.

10.
Micromachines (Basel) ; 13(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35630171

RESUMEN

In the harsh environment of high temperature and high rotation, a single parameter is difficult to satisfy the multi-parameter test requirements of aerospace metallurgy. Therefore, a multi-parameter coplanar integrated surface acoustic wave (SAW) sensor based on Langasite (LGS) is proposed. In this paper, the optimal cut for different measurement parameters is analyzed, and the optimal cut to temperature, pressure and vibration are obtained. The simulation results show that (0°, 138.5°, 25°) LGS has superior second-order temperature sensitivity, the edge of the rectangular sealed cavity is more suitable for pressure sensors, and the optimal cut is (0°, 138.5°, 30°). The stress of the vibration sensor cantilever beam is mainly concentrated on the edge of the fixed end, and the optimal cut is (0°, 138.5°, 35°). Based on the optimal sensitive tangential direction of each sensitive element and the symmetry of the Langasite wafer, the reasonable layout of the coplanar integrated structure with the three parameters of temperature, pressure and vibration is determined. Moreover, according to the optimal orientation selection and reasonable structure layout of each parameter, combined with frequency separation rules, the parameters of interdigital electrode were determined, and the idea of multi-parameter integrated design was simulated and verified.

11.
Micromachines (Basel) ; 13(3)2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35334769

RESUMEN

We proposed a novel Langasite (LGS) bonding method only using high temperature to solve the manufacturing difficulty of the sealed microcavity of pressure sensors. The optimal bonding parameters by comparative experiments were defined as 1350 °C for 3 h. Due to simple experimental conditions, low experimental cost, and be suitable for bonding wafers with various sizes, the method is convenient for popularization and mass-production, thus promoting the development of surface acoustic wave (SAW) devices at high temperatures. Simultaneously, an intact microcavity was observed by scanning electron microscopy, and a tight and void-free bonding interface with a transition layer thickness of 2.2 nm was confirmed via transmission electron microscopy. The results of tensile and leakage experiments indicated that the bonded wafer with the sealed microcavity exhibited a high bonding strength of 4.02 MPa and excellent seal performance. Compared to the original wafer, the piezoelectric constant of the LGS bonded wafer had a reduction of only 4.43%. The above characteristics show that the sealed microcavity prepared by this method satisfies the conditions for fabricating the LGS SAW pressure sensors. Additionally, based on the bonding interface characterizations, the mechanism of LGS bonding has been investigated for the first time.

12.
Polymers (Basel) ; 15(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36616363

RESUMEN

In this study, chitooligosaccharide-niacin acid conjugate was designed and synthesized through the reaction of chitooligosaccharide and nicotinic acid with the aid of N,N'-carbonyldiimidazole. Its cationic derivatives were prepared by the further nucleophilic substitution reaction between the chitooligosaccharide-niacin acid conjugate and bromopropyl trialkyl ammonium bromide with different alkyl chain lengths. The specific structural characterization of all derivatives was identified using Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR), and the degree of substitution was obtained using the integral area ratio of the hydrogen signals. Specifically, the antibacterial activities against Escherichia coli, Staphylococcus aureus, Pseudoalteromonas citrea and Vibrio harveyi were evaluated using broth dilution methods. In addition, their antifungal activities, including Botrytis cinerea, Glomerella cingulate and Fusarium oxysporum f. sp. cubense were assayed in vitro using the mycelium growth rate method. Experimental data proved that the samples showed antibacterial activity against four pathogenic bacteria (MIC = 1-0.125 mg/mL, MBC = 8-0.5 mg/mL) and enhanced antifungal activity (50.30-68.48% at 1.0 mg/mL) against Botrytis cinerea. In particular, of all chitooligosaccharide derivatives, the chitooligosaccharide derivative containing pyridinium and tri-n-butylamine showed the strongest antibacterial capacity against all of the test pathogenic bacteria; the MIC against Vibrio harveyi was 0.125 mg/mL and the MBC was 1 mg/mL. The experimental results above showed that the introduction of pyridinium salt and quaternary ammonium salt bearing trialkyl enhanced the antimicrobial activity. In addition, the cytotoxicity against L929 cells of the chitooligosaccharide derivatives was evaluated, and the compounds exhibited slight cytotoxicity. Specifically, the cell viability was greater than 91.80% at all test concentrations. The results suggested that the cationic chitooligosaccharide derivatives bearing pyridinium and trialkyl ammonium possessed better antimicrobial activity than pure chitooligosaccharide, indicating their potential as antimicrobial agents in food, medicine, cosmetics and other fields.

13.
Rev Sci Instrum ; 92(8): 085003, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34470398

RESUMEN

It is not easy to conduct wired tests on sensors in harsh environments, and network analyzers are large, heavy, and inconvenient to carry. At the same time, the price of network analyzers is usually very high, which greatly limits their application. In this study, a voltage standing wave ratio reading circuit is designed to test inductively coupled (LC) wireless passive sensors. By introducing the theory of the standing wave ratio, the design concept and function of each module are analyzed from each specific module. The resonant frequency reading circuit of the sensor is designed and fabricated, and its sweep frequency range covers the frequency range of the commonly used LC wireless sensor, which widens the bandwidth measurement range. The main control chip adopts STM32 series, which makes the circuit and sensor module simple in structure and low in cost. This circuit can accurately obtain the resonant frequency of the sensor through the standing wave ratio and can measure the dynamic change in the sensor standing wave ratio. The output frequency range and output precision of the linear sweep source of the signal reading circuit were tested, and the dynamic testing ability of the circuit to the changing frequency was verified and improved the measurement accuracy.

14.
Micromachines (Basel) ; 12(6)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072946

RESUMEN

Performing high-temperature measurements on the rotating parts of aero-engine systems requires wireless passive sensors. Surface acoustic wave (SAW) sensors can measure high temperatures wirelessly, making them ideal for extreme situations where wired sensors are not applicable. This study reports a new SAW temperature sensor based on a langasite (LGS) substrate that can perform measurements in environments with temperatures as high as 1300 °C. The Pt electrode and LGS substrate were protected by an AlN passivation layer deposited via a pulsed laser, thereby improving the crystallization quality of the Pt film, with the function and stability of the SAW device guaranteed at 1100 °C. The linear relationship between the resonant frequency and temperature is verified by various high-temperature radio-frequency (RF) tests. Changes in sample microstructure before and after high-temperature exposure are analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The analysis confirms that the proposed AlN/Pt/Cr thin-film electrode has great application potential in high-temperature SAW sensors.

15.
Bioresour Technol ; 316: 123853, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32731173

RESUMEN

Lewis-acid catalyst Nb2O5 is first applied in catalytic fast pyrolysis (CFP) of enzymatic hydrolysis lignin (EHL) to produce aromatic hydrocarbons (AHs) that can be used as alternative liquid fuels. The catalyst exhibits a good talent to convert lignin into AHs with quite little polycyclic aromatic hydrocarbons (PAHs) formation. The yield of AHs reaches 11.2 wt% and monocyclic aromatic hydrocarbons (MAHs) takes up 94% under the optimized condition (Catalyst to Lignin ratio 9:1, 650 °C). No coke is generated during the reactions. The reaction sequence is proposed and verified by model compound reactions. Furthermore, DFT calculations are performed to understand the mechanisms of limitation of PAHs or char/coke formation and the efficient deoxygenation ability over catalyst. Nb2O5 with Lewis acid sites is proved to be a promising catalyst for the production of AHs from lignin. This work provides a new idea on choice of catalysts for CFP of lignin in future.


Asunto(s)
Lignina , Pirólisis , Catálisis , Calor , Hidrólisis , Niobio , Óxidos
16.
Nat Prod Res ; 34(14): 2037-2042, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30777455

RESUMEN

A new sordarin derivative, trichosordarin A (1), with a unique norditerpene aglycone was isolated from the culture of a marine-sediment-derived fungal strain, Trichoderma harzianum R5. Its structure and relative configuration were unequivocally identified by a combination of 1D/2D NMR, IR, and mass spectrometric methods. Compound 1 was assayed to be toxic to the marine zooplankton Artemia salina.


Asunto(s)
Trichoderma/química , Animales , Artemia/efectos de los fármacos , Conformación Molecular , Estructura Molecular , Análisis Espectral
17.
Anim Sci J ; 90(9): 1229-1238, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31264347

RESUMEN

This study evaluated the effects of berberine on growth performance, immunity, haematological parameters, antioxidant capacity, and the expression of immune response-related genes in lipopolysaccharide (LPS)-challenged broilers. We assigned 120 one-day-old male broilers (Ross 308) to two treatment groups; each group included two subgroups, each of which included six replicates of five birds per replicate. The experiment used a 2 × 2 factorial arrangement with berberine treatment (0 or 60 mg/kg dietary) and challenge status [injection of saline (9 g/L w/v) or LPS (1.5 mg/kg body weight)] as the main factors. On days 14, 16, 18 and 20, broilers were intraperitoneally injected with LPS or physiological saline. Blood and liver samples were collected on day 21. Dietary berberine supplementation significantly alleviated the compromised average daily gain and average daily feed intake (p < 0.05) caused by LPS. The LPS challenge led to increased lymphocyte and white blood cell (WBC) counts, malondialdehyde (serum and liver) content, and immunoglobulin G and M, tumour necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) expression (p < 0.05) and significantly reduced serum total superoxide dismutase (T-SOD) activity (p < 0.05). Dietary berberine significantly mitigated the LPS-induced decreases in the mRNA expression of nuclear factor-kappa B (NF-κB), TNF-α, IL-1ß, inducible nitrite synthase and cyclooxygenase-2 (p < 0.05) in the liver. In conclusion, berberine supplementation has a positive effect on LPS challenge, which may be related to the increase in antioxidant enzyme activity and inhibition of both NF-κB signalling and the expression of inflammatory mediators.


Asunto(s)
Antioxidantes/uso terapéutico , Berberina/uso terapéutico , Dieta/veterinaria , Crecimiento/efectos de los fármacos , Inflamación/veterinaria , Lipopolisacáridos/inmunología , Animales , Elementos de Respuesta Antioxidante , Antioxidantes/metabolismo , Berberina/metabolismo , Pollos , Suplementos Dietéticos , Inflamación/dietoterapia , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , Masculino , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Enfermedades de las Aves de Corral/dietoterapia
18.
RSC Adv ; 8(62): 35690-35699, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35547931

RESUMEN

Chemical kinetic modeling was applied to simulate N transformation in the pressurized oxy-fuel combustion process of pulverized coal. Modeling accuracy was validated by experimental data at different operation pressures. The key reaction paths from fuel-N to different N products were revealed by analyzing the rate of production. NO formation was synergistically affected by six elementary reactions, in which NCO and other intermediate species were involved. The reactions among N, NH, NH2, and NO were the key paths of N2 formation. After pressurizing the combustion system, NO and N2 contents decreased and increased, respectively. High operation pressure inhibited the diffusion of NO from the internal to the external part of char. This condition prolonged the residence time of NO inside the char, triggered a typical heterogeneous reaction between gaseous NO and unburned char, and reduced the conversion from fuel-N to NO. Moreover, modeling was performed to predict NO x emission in pressurized oxy-fuel combustion as a function of various operating parameters, including temperature and excess air and recycling ratios. This study may provide guidance for reducing NO x emissions and improving combustion efficiency in oxy-fuel combustion, and it can serve as a reference for industrial applications that involve pulverized coal combustion.

19.
Bioorg Med Chem Lett ; 26(20): 5029-5031, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27612543

RESUMEN

Citrinovirin (1), a novel norditerpene with an unprecedented carbon skeleton along with three known compounds, cyclonerodiol (2), 3-(2-hydroxypropyl)-4-(hexa-2E,4E-dien-6-yl)furan-2(5H)-one (3), and 5-hydroxy-3-hydroxymethyl-2-methyl-7-methoxychromone (4), was isolated from the culture of a marine brown alga-endophytic strain (cf-27) of Trichoderma citrinoviride. The structure and relative configuration of 1 were identified by spectroscopic methods, including 1D/2D NMR and MS. Its absolute configuration was established by analysis of ECD spectrum, aided by quantum chemical calculations. A plausible biogenetic pathway is proposed for 1, and it was evaluated to be active against Staphylococcus aureus.


Asunto(s)
Diterpenos/química , Trichoderma/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Diterpenos/farmacología , Biología Marina , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray
20.
Nat Prod Res ; 30(14): 1605-10, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26728965

RESUMEN

One new diterpene, trichocitrin (1), and four known secondary metabolites, nafuredin (2), 5-hydroxy-2,3-dimethyl-7-methoxychromone (3), 24-methylenecycloartanol (4) and citrostadienol (5), were isolated from the culture of marine brown alga-endophytic Trichoderma citrinoviride cf-27. Trichocitrin (1) represents the first Trichoderma-derived and furan-bearing fusicoccane diterpene, and its structure and relative configuration were identified by analysis of 1D/2D NMR and mass spectroscopic data. Compounds 1 and 2 exhibited 8.0- and 9.5-mm inhibition zones, respectively, against Escherichia coli at 20 µg/disc and 54.1 and 36.7% growth inhibition, respectively, of Prorocentrum donghaiense at 80 µg/mL.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Diterpenos/química , Diterpenos/farmacología , Trichoderma/química , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Fermentación , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...