Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 136(9): 192, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37603118

RESUMEN

KEY MESSAGE: A SNP mutation in CmSN, encoding an EamA-like transporter, is responsible for fruit skin netting in melon. In maturing melon (Cucumis melo L.), the rind becomes reticulated or netted, a unique characteristic that dramatically changes the appearance of the fruit. However, little is known about the molecular basis of fruit skin netting formation in this important cucurbit crop. Here, we conducted map-based cloning of a skin netting (CmSN) locus using segregating populations derived from the cross between the smooth-fruit line H906 and the netted-fruit line H581. The results showed that CmSN was controlled by a single dominant gene and was primarily positioned on melon chromosome 2, within a physical interval of ~ 351 kb. Further fine mapping in a large F2 population narrowed this region to a 71-kb region harboring 5 genes. MELO3C010288, which encodes a protein in the EamA-like transporter family, is the best possible candidate gene for the netted phenotype. Two nonsynonymous single nucleotide polymorphisms (SNPs) were identified in the third and sixth exons of the CmSN gene and co-segregated with the skin netting (SN) phenotype among the genetic population. A genome-wide association study (GWAS) determined that CmSN is probably a domestication gene under selective pressure during the subspecies C. melo subsp. melo differentiation. The SNP in the third exon of CmSN (the leading SNP in GWAS) revealed a bi-allelic diversity in natural accessions with SN traits. Our results lay a foundation for deciphering the molecular mechanism underlying the formation of fruit skin netting in melon, as well as provide a strategy for genetic improvement of netted fruit using a marker-assisted selection approach.


Asunto(s)
Cucumis melo , Frutas , Frutas/genética , Estudio de Asociación del Genoma Completo , Alelos , Cucumis melo/genética , Domesticación
2.
Environ Sci Technol ; 57(23): 8739-8749, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37252902

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) have potential to accumulate in crops and pose health risks to humans, but it is unclear how the widely present organic matters in soil, such as humic acid (HA), affect their uptake and translocation in plants. In this study, hydroponic experiments were conducted to systematically disclose the impacts of HA on the uptake, translocation, and transmembrane transport at the subcellular level of four PFASs, including perfluorooctane sulfonic acid, perfluorooctanoic acid, perfluorohexane sulfonic acid, and 6:2 chlorinated polyfluoroalkyl ether sulfonate in wheat (Triticum aestivum L.). The results of the uptake and depuration experiments indicated that HA depressed the adsorption and absorption of PFASs in wheat roots by reducing the bioavailability of PFASs, and HA did not affect the long-range transport of PFASs to be eliminated via the phloem of wheat. However, HA facilitated their transmembrane transport in wheat roots, while the contrary effect was observed in the shoots. The inhibitor experiments coupled with transcriptomics analysis uncover that the increased transmembrane transport of PFASs stimulated by HA is mainly driven by the slow-type anion channel pathways interacting with Ca2+-dependent protein kinases (Ca2+-CDPK-SLAC1). The promoted transmembrane transport of PFASs might cause adverse effects on the plant cell wall, which causes further concerns.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Humanos , Sustancias Húmicas/análisis , Triticum , Ácidos Alcanesulfónicos/análisis , Ácidos Alcanesulfónicos/metabolismo , Suelo , Alcanosulfonatos/análisis , Fluorocarburos/análisis , China
3.
Drug Des Devel Ther ; 17: 579-595, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36855515

RESUMEN

Purpose: To study the efficacy of Qianshan Huoxue Gao (QS) in treating acute coronary syndrome (ACS) and to explore the mechanism of action from the perspective of intestinal flora regulation. Methods: Male Sprague-Dawley rats were divided into control, model, QS, and atorvastatin groups; except for the control group, rats underwent ligation of the left anterior descending branch of the coronary artery. Following treatment for 28 days, cardiac function was evaluated using an echocardiographic assay; ELISAs for serum creatine kinase isoenzyme (CK-MB), cardiac troponin I (cTnI), high-sensitivity C-reactive protein (hs-CRP), interleukin (IL)-2 (IL-2), IL-6, and tumor necrosis factor-α (TNF-α); assessment of cardiac enzymes and inflammatory response; hematoxylin and eosin (HE) staining for histopathological changes in the heart, skin, and viscera; 16S rRNA gene sequencing for intestinal flora diversity and structural differences analysis; and we further investigated intestinal contents using metabolomics. Results: Compared with controls, CK-MB and cTnI were increased (P<0.01); ejection factor and fractional shortening were decreased (P<0.01); left ventricular internal end-diastolic dimension and left ventricular internal end-systolic dimension were increased (P<0.01); and IL-2, IL-6, TNF-α, and hs-CRP were increased in the model group. Myocardial damage and inflammation were also observed by HE staining. QS improved these indexes, similar to the atorvastatin group; therefore, QS could effectively treat ACS. QS modulates the structure and abundance of the intestinal flora in ACS model rats, among which Bacteroides, Lactobacillus, and Rikenellaceae_RC9_gut_group are associated with cardiovascular disease. Metabolomics revealed that the intestinal metabolite content changed in ACS, with ethanolamine (EA) being the most relevant metabolite for ACS treatment by QS. EA was significantly positively correlated with Eubacterium xylanophilum group, Ruminococcus, unclassified f__Oscillospiraceae, Intestinimonas, Eubacterium siraeum group, Lachnospiraceae NK4A136 group, and norank f__Desulfovibrionaceae. Conclusion: QS can effectively treat ACS and can restore regulation of the intestinal flora. EA may be the primary metabolite of QS, exerting a therapeutic effect in ACS.


Asunto(s)
Síndrome Coronario Agudo , Microbioma Gastrointestinal , Masculino , Animales , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa , Interleucina-2 , Atorvastatina , Proteína C-Reactiva , Interleucina-6 , ARN Ribosómico 16S , Etanolamina , Etanolaminas
4.
Environ Sci Technol ; 57(4): 1670-1679, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36653896

RESUMEN

Perfluoroalkyl substances (PFASs) are widely present in agricultural soils, but their sources and fate in greenhouse soils remain unclear. In this study, the sources, fractionation, and migration of PFASs were compared in the greenhouse and open-field soils of the Fen-Wei Plain, China. The total concentrations of PFASs (Σ17PFAS) were comparable in the greenhouse and open-field soils but with different profiles. Detrended correspondence and correlation analyses indicated that dry deposition was an important source of PFASs in the open-field soils, whereas surface water had a notable contribution to the greenhouse soils due to more frequent irrigation. The PFASs in the soils were mainly present in water-soluble fraction (F1). The F1 proportions of short-chain and long-chain PFASs were negatively correlated with the anion exchange capacity (AEC) and organic carbon content (foc) in soil, respectively, with that of short-chain PFASs being higher than long-chain ones. The AEC was significantly higher while foc was lower in the greenhouse soil than the open-field soil, leading to lower proportions of F1 for short-chain PFASs while higher for long-chain ones in the greenhouse soil. Frequent irrigation and elevated temperatures promoted the migration of PFASs in greenhouse soil; thus, the Σ17PFAS and F1 exhibited an increasing trend with soil depth.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Suelo , Monitoreo del Ambiente , Agricultura , Agua , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis
5.
J Hazard Mater ; 445: 130566, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36502721

RESUMEN

Emerging poly/perfluoroalkyl substances (PFASs) have been widely detected in the environment, but their bioaccumulation and biomagnification behaviors are not well understood. We collected surface water, sediment, and various aquatic organisms from Lake Taihu, China. Several emerging PFASs, such as fluorotelomer sulfonates (FTSs), hexafluoropropylene oxides (HFPOs), and chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) were frequently detected in water and sediment samples. The concentrations of HFPO trimer acid (HFPO-TA), 4,8-dioxa-3 H-per-fluorononanoate, and FTSs were remarkably higher than those reported previously, indicating that their application is increasing in Taihu Basin. These emerging PFASs displayed higher sediment/water partitioning coefficients (log Koc) than the corresponding perfluoroalkyl acids (PFAAs) with the same perfluorinated carbon chain length. HFPOs and Cl-PFESAs were more labile to deposit in fish livers than perfluorooctanoic and perfluorooctane sulfonic acids, respectively. Both field investigations and model simulations indicated that HFPO-TA and Cl-PFESAs, as well as the hydrogen-substituted analogs of 6:2 Cl-PFESA (6:2 H-PFESA), were biomagnified along the aquatic food chain. The bioaccumulation model simulation revealed that the accumulation of these emerging PFASs in fish was mainly through dietary intake, whereas gill respiration and fecal excretion facilitated their elimination. Metabolic transformation might also contribute to their elimination relative to the legacy ones.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Animales , Bioacumulación , Cadena Alimentaria , Monitoreo del Ambiente , Ácidos Sulfónicos/análisis , Fluorocarburos/análisis , Éteres , Éter , China , Peces , Agua , Alcanosulfonatos , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Technol ; 56(22): 15617-15626, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36272151

RESUMEN

Dissolved organic matter (DOM) such as fulvic acid (FA) and humic acid (HA) in soil considerably affects the fate of per- and polyfluoroalkyl substances (PFASs). However, the effect of DOM on their behavior in plants remains unclear. Herein, hydroponic experiments indicate that FA and HA reduce the accumulation of an emerging PFAS of high concern, 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA), in wheat roots by reducing its bioavailability in the solution. Nevertheless, FA with low molecular weight (MW) promotes its absorption and translocation from the roots to the shoots by stimulating the activity and the related genes of the plasma membrane H+-ATPase, whereas high-MW HA shows the opposite effect. Moreover, in vivo and in vitro experiments indicate that 6:2 Cl-PFESA undergoes reductive dechlorination, which is regulated mainly using nitrate reductase and glutathione transferase. HA and FA, particularly the latter, promote the dechlorination of 6:2 Cl-PFESA in wheat by enhancing electron transfer efficiency and superoxide production. Transcriptomic analysis indicates that FA also stimulates catalytic activity, cation binding, and oxidoreductase activity, facilitating 6:2 Cl-PFESA transformation in wheat.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Éter , Triticum , Materia Orgánica Disuelta , Peso Molecular , Éteres , Alcanosulfonatos , Sustancias Húmicas
7.
Infect Drug Resist ; 15: 3161-3171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35747334

RESUMEN

Purpose: To compare antimicrobial resistance, virulence, clinical characteristics, and risk factors between carbapenem-resistant K. pneumoniae (CRKP) and carbapenem-susceptible K. pneumoniae (CSKP) isolates from patients with bloodstream infections (BSIs) in China. Patients and Methods: The clinical data of 103 patients with K. pneumoniae BSI from 10 hospitals were retrospectively analyzed. The minimum inhibitory concentrations of 15 antibiotics against the bacteria were determined. A Galleria mellonella infection model was used to evaluate virulence of the isolates. Kaplan-Meier curves were calculated to evaluate the 28-day and in-hospital survival rates of the isolates. The risk factors for CRKP and CSKP infection and respective mortality rate were evaluated by univariate analysis, and independent risk factors were evaluated using the multivariate logistic regression model. Results: Our results indicated that CRKP isolates were more resistant to most tested antibiotics than CSKP isolates. The G. mellonella infection model was used to demonstrate that CRKP isolates were more virulent than CSKP isolates. We found that in-hospital deaths occurred in 39.3% (22/56) of patients with CRKP BSIs and were significantly higher than those in patients with CSKP infections (19.1%, 9/47). Patients infected with CRKP isolates had poorer outcomes than those infected with the CSKP strains. For in-hospital mortality of CRKP BSIs, the independent risk factors included carbapenem-resistant Enterobacterales bacteremia and length of hospitalization after the onset of BSI. Conclusion: Our findings confirm that CRKP isolates are more drug-resistant than CSKP isolates and are associated with poorer outcomes. To prevent CRKP infection, strict infection control strategies and active surveillance should be implemented in hospitals.

8.
Sci Total Environ ; 838(Pt 3): 156397, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35660442

RESUMEN

Until now, there is no bioaccumulation model to predict bioaccumulation of polyfluoroalkyl substances (PFASs) in aquatic organisms due to their unique amphiphilic properties. For the first time, protein contents instead of lipid contents of organisms were used in bioaccumulation models to predict the concentrations and reveal the accumulation mechanisms of PFASs in various aquatic organisms, based on the available data. Comparison between the modeled and measured results indicated the models were promising to predict the PFAS concentrations in the fishes at different trophic levels very well, as well as their bioaccumulation factors (BAF) and trophic magnification factors (TMF) of PFASs in fish. Both water and sediment are important exposure sources of PFASs in aquatic organisms. As the two main uptake pathways, the contribution of gill respiratory decreases while that of dietary intake increases with the chain length of PFASs increasing. Fecal excretion and gill respiration are the main pathways for fish to eliminate PFASs, and their relative contributions increase and decrease respectively with chain length. The short-chain (C6-C8) perfluoroalkyl acids (PFAAs) are greatly eliminated via gill respiratory quickly, leading to their very low BAFs. As the carbon chain length increases, dietary intake becomes dominant in the uptake, while elimination is mainly through fecal excretion with relatively low rates, especially in the fishes with high protein contents. For the very long chain (C12-C16) PFASs, they are very difficult to excrete with a low total elimination rate constant (ke = 0.463-0.743 d-1), thus leading to their high BAFs and TMFs. The high intake rate but low elimination rate, as well as the high water and sediment concentrations together contribute to the highest accumulated concentration perfluorooctane sulfonic acid in the fish of Taihu Lake.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos/metabolismo , Bioacumulación , Monitoreo del Ambiente/métodos , Peces/metabolismo , Fluorocarburos/análisis , Cadena Alimentaria , Agua/metabolismo , Contaminantes Químicos del Agua/análisis
9.
Neuropsychiatr Dis Treat ; 18: 943-950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35535212

RESUMEN

Purpose: Stroke-associated infection (SAI) is one of the most common post-stroke complications, which may lead to a relatively poor prognosis. This study aims to explore the potential relationship between serum calcium levels and SAI. Patients and Methods: This is a cross-sectional study involving 395 participants. SAI is a term that covers stroke-associated pneumonia (SAP), urinary tract infection (UTI), as well as other infections diagnosed during the first week after a stroke. Serum calcium levels were measured within 24 hrs of admission. To determine the association of serum calcium levels with the SAI, logistic regression models were calculated. An adjusted spline regression model was used to further confirm the relationship between the two. Results: Among the total patients, SAI occurred in 107 (27.1%) patients. Serum calcium was associated with SAI and was independent of the SAI risk factors for age, admission NIHSS score, and intravascular therapy [adjusted OR 0.040 (95% CI = 0.005-0.291), p = 0.002]. Remarkably, this trend applies predominantly to serum calcium levels less than 2.25mmol/L (p= 0.005 for linearity). Conclusion: Serum calcium levels are associated with the risk of SAI, when serum calcium is below normal (2.25mmol/L), the risk of SAI increases as serum calcium levels decrease.

11.
Microbiol Spectr ; 10(2): e0206421, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35230154

RESUMEN

Two tet(X4)-positive Enterobacter cloacae isolates TECL_1 and TECL_2 were isolated from pigs in China. S1-PFGE and Southern blotting showed that tet(X4) located on plasmids in the size of ∼290 kb and ∼190 kb in TECL_1 and TECL_2, respectively. Conjugation experiment demonstrated that the tet(X4)-harboring plasmid can transfer from the donor strain TECL_1 and TECL_2 to the recipient strain Escherichia coli J53, and the tigecycline resistance of transconjugants was increased by 128-fold and 64-fold compared with E. coli J53, respectively. We obtained the complete plasmid sequence of pTECL_2-190k-tetX4 (190,185 bp) from E. cloacae TECL_2 and found that the plasmid was a hybrid plasmid with replicon types of IncFIA, IncHI1A and IncHI1B. We further analyzed 85 tet(X4)-carrying plasmids in the public database and clarified that pTECL_2-190k-tetX4-like plasmid was widespread in multiple species of Enterobacteriaceae. IMPORTANCE We identified two tet(X4)-positive E. cloacae isolates, which has not been previously reported. We obtained the complete sequence of pTECL_2-190k-tetX4 and found that it was a hybrid plasmid with multiple replicon types, including IncFIA, IncHI1A and IncHI1B. By comparing all the known tet(X4)-carrying plasmids, we found that pTECL_2-190k-tetX4-like plasmid has been disseminated across various species in China. Our study expanded the identification of tet(X4)-positive species and emphasized that pTECL_2-190k-tetX4-like plasmid has spread widely in various species.


Asunto(s)
Enterobacter cloacae , Escherichia coli , Animales , Antibacterianos/farmacología , China , Enterobacter cloacae/genética , Escherichia coli/genética , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Porcinos , Tigeciclina/farmacología
12.
BMC Genomics ; 23(1): 20, 2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-34996351

RESUMEN

BACKGROUND: Carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) causes serious infections with significant morbidity and mortality. However, the epidemiology and transmission mechanisms of CR-hvKP and the corresponding carbapenem-resistant plasmids require further investigation. Herein, we have characterized an ST11 K. pneumoniae strain EBSI041 from the blood sample encoding both hypervirulence and carbapenem resistance phenotypes from a patient in Egypt. RESULTS: K. pneumoniae strain EBSI041 showed multidrug-resistance phenotypes, where it was highly resistant to almost all tested antibiotics including carbapenems. And hypervirulence phenotypes of EBSI041 was confirmed by the model of Galleria mellonella infection. Whole-genome sequencing analysis showed that the hybrid plasmid pEBSI041-1 carried a set of virulence factors rmpA, rmpA2, iucABCD and iutA, and six resistance genes aph(3')-VI, armA, msr(E), mph(E), qnrS, and sul2. Besides, blaOXA-48 and blaSHV-12 were harboured in a novel conjugative IncL-type plasmid pEBSI041-2. The blaKPC-2-carrying plasmid pEBSI041-3, a non-conjugative plasmid lacking the conjugative transfer genes, could be transferred with the help of pEBSI041-2, and the two plasmids could fuse into a new plasmid during co-transfer. Moreover, the emergence of the p16HN-263_KPC-like plasmids is likely due to the integration of pEBSI041-3 and pEBSI041-4 via IS26-mediated rearrangement. CONCLUSION: To the best of our knowledge, this is the first report on the complete genome sequence of KPC-2- and OXA-48-coproducing hypervirulent K. pneumoniae from Egypt. These results give new insights into the adaptation and evolution of K. pneumoniae during nosocomial infections.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Carbapenémicos/farmacología , Egipto , Humanos , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/genética , Plásmidos/genética , beta-Lactamasas/genética
13.
Environ Int ; 158: 107007, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34991266

RESUMEN

Driven by increasingly stringent regulations on the legacy poly/perfluoroalkyl (PFASs), a variety of fluorinated alternatives have emerged on the market. Tibetan Plateau (TP) plays an important role in accumulation of organic pollutants due to its high altitude and wet deposition. In this study, the occurrence, spatial distribution and sources of PFASs in the TP soils were investigated. The total concentrations of PFASs ranged from 0.814-4.51 ng/g in the TP soils, with the identification of a variety of novel PFASs, including fluorotelomer sulfonates (FTSs), chlorinated polyfluorinated ether sulfonic acid (Cl-PFESAs), and hexafluoropropylene oxide (HFPO) homologues. Generally, the PFAS concentrations exhibited an increase trend from the west to east, and gradually increased with the altitude increasing, suggesting the impacts of human activities and mountain cold-trapping. The PFASs decreased with the increase of soil depth, but at different extents, which were related to their occurrence time, interactions with organic matters, and microbial transformation in soil. Most of the PFASs were present as free fractions in soil, particularly for the short-chain perfluoroalkyl acids (PFAAs), implying that they were liable to be accumulated in organisms and transport to groundwater. Multiple source apportionment analyses indicated that PFASs in the soil of TP were not only derived from the local pollution, but also from the atmospheric migration influenced by Indian Monsoon and westerly winds.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Fluorocarburos/análisis , Humanos , Suelo , Tibet , Contaminantes Químicos del Agua/análisis
14.
Front Cardiovasc Med ; 9: 1038273, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684592

RESUMEN

Aims: We assessed the efficacy of the traditional Chinese medicine formulation Jia-Wei-Si-Miao-Yong-An decoction (HJ11) in the treatment of acute coronary syndrome and evaluated its impact on the intestinal microbiota and their metabolites. Methods: An acute coronary syndrome model was established in rats, which were randomly assigned to the model, HJ11 treatment, and atorvastatin treatment groups. Rats were then administered saline solution (model and sham operation control groups) or drugs by oral gavage for 28 d. Echocardiography was performed and serum creatine kinase-MB and cardiac troponin I levels were monitored to examine the cardiac function. Inflammation was evaluated using hematoxylin and eosin staining of heart tissue, and serum interleukin-2, interleukin-6, tumor necrosis factor alpha, and high-sensitivity C-reactive protein measurements. Gut microbiota composition was analyzed via 16S rRNA gene sequencing. Metabolomics was used to determine fecal metabolites and elucidate the modes of action of HJ11 in acute coronary syndrome treatment. Results: HJ11 improved cardiac function and attenuated inflammation in rats with acute coronary syndrome. Relative to the untreated model group, the HJ11-treated group presented normalized Firmicutes/Bacteroidetes ratio and reduced abundances of the bacterial genera norank_f__Ruminococcaceae, Desulfovibrio, Clostridium_sensu_stricto_1, Adlercreutzia, Staphylococcus, Bacteroides, Prevotella, Rikenellaceae_RC9_gut_group, unclassified_o__Bacteroidales, and Ruminococcus_gauvreauii_group. We found 23 differentially expressed intestinal metabolites, and the enriched metabolic pathways were mainly related to amino acid metabolism. We also discovered that asymmetric dimethylarginine levels were strongly associated with cardiovascular disease. Correlation analyses revealed strong associations among intestinal microflora, their metabolites, proinflammatory factors, and cardiac function. Hence, the therapeutic effects of HJ11 on acute coronary syndrome are related to specific alterations in gut microbiota and their metabolites. Conclusion: This work demonstrated that HJ11 effectively treats acute coronary syndrome. HJ11 seems to increase the abundance of beneficial bacterial taxa (Bacteroides and Rikenellaceae_RC9_gut_group), mitigate the risk factors associated with cardiovascular disease, alter bacterial metabolites, lower asymmetric dimethylarginine levels, and effectively treat acute coronary syndrome.

15.
Front Cell Infect Microbiol ; 11: 684965, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34737971

RESUMEN

Background: The diagnosis of bacterial pathogens in lower respiratory tract infections (LRI) using conventional culture methods remains challenging and time-consuming. Objectives: To evaluate the clinical performance of a rapid nanopore-sequencing based metagenomics test for diagnosis of bacterial pathogens in common LRIs through a large-scale prospective study. Methods: We enrolled 292 hospitalized patients suspected to have LRIs between November 2018 and June 2019 in a single-center, prospective cohort study. Rapid clinical metagenomics test was performed on-site, and the results were compared with those of routine microbiology tests. Results: 171 bronchoalveolar lavage fluid (BAL) and 121 sputum samples were collected from patients with six kinds of LRIs. The turnaround time (from sample registration to result) for the rapid metagenomics test was 6.4 ± 1.4 hours, compared to 94.8 ± 34.9 hours for routine culture. Compared with culture and real-time PCR validation tests, rapid metagenomics achieved 96.6% sensitivity and 88.0% specificity and identified pathogens in 63 out of 161 (39.1%) culture-negative samples. Correlation between enriched anaerobes and lung abscess was observed by Gene Set Enrichment Analysis. Moreover, 38 anaerobic species failed in culture was identified by metagenomics sequencing. The hypothetical impact of metagenomics test proposed antibiotic de-escalation in 34 patients compared to 1 using routine culture. Conclusions: Rapid clinical metagenomics test improved pathogen detection yield in the diagnosis of LRI. Empirical antimicrobial therapy could be de-escalated if rapid metagenomics test results were hypothetically applied to clinical management.


Asunto(s)
Nanoporos , Neumonía Bacteriana , Bacterias/genética , Humanos , Metagenómica , Estudios Prospectivos , Sensibilidad y Especificidad
16.
FEBS Open Bio ; 11(7): 1953-1964, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33993653

RESUMEN

Endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) plays a crucial role in maintaining vascular homeostasis. As a hallmark of eNOS activation, phosphorylation of eNOS at Ser1177 induced by activated protein kinase B (PKB/Akt) is pivotal for NO production. The complete activation of Akt requires its phosphorylation of both Thr308 and Ser473. However, which site plays the main role in regulating phosphorylation of eNOS Ser1177 is still controversial. The purpose of the present study is to explore the specific regulatory mechanism of phosphorylated Akt in eNOS activation. Inhibition of Akt Thr308 phosphorylation by a specific inhibitor or by siRNA in vitro led to a decrease in eNOS phosphorylation at Ser1177 and to lower NO concentration in the cell culture medium of HUVECs. However, inhibiting p-Akt Ser473 had no effect on eNOS phosphorylation at Ser1177. Next, we administered mice with inhibitors to downregulate p-Akt Ser473 or Thr308 activity. Along with the inhibition of p-Akt Thr308, vascular p-eNOS Ser1177 protein was simultaneously downregulated in parallel with a decrease in plasma NO concentration. Additionally, we cultured HUVECs at various temperature conditions (37, 22, and 4 °C). The results showed that p-Akt Ser473 was gradually decreased in line with the reduction in temperature, accompanied by increased levels of p-Akt Thr308 and p-eNOS Ser1177. Taken together, our study indicates that the phosphorylation of Akt at Thr308, but not at Ser473, plays a more significant role in regulating p-eNOS Ser1177 levels under physiological conditions.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
17.
mSphere ; 6(3)2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34011682

RESUMEN

The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates in Egyptian hospitals has been reported. However, the genetic basis and analysis of the plasmids associated with carbapenem-resistant hypervirulent K. pneumoniae (CR-HvKP) in Egypt have not been presented. Therefore, we attempted to decipher the plasmid sequences that are responsible for transferring the determinants of carbapenem resistance, particularly blaNDM-1 and blaKPC-2 Out of 34 K. pneumoniae isolates collected from two tertiary hospitals in Egypt, 31 were CRKP. Whole-genome sequencing revealed that our isolates were related to 13 different sequence types (STs). The most prevalent ST was ST101, followed by ST383 and ST11. Among the CRKP isolates, one isolate named EBSI036 has been reassessed by Nanopore sequencing. Genetic environment analysis showed that EBSI036 carried 20 antibiotic resistance genes and was identified as a CR-HvKP strain: it harbored four plasmids, namely, pEBSI036-1-NDM-VIR, pEBSI036-2-KPC, pEBSI036-3, and pEBSI036-4. The two carbapenemase genes blaNDM-1 and blaKPC-2 were located on plasmids pEBSI036-1-NDM-VIR and pEBSI036-2-KPC, respectively. The IncFIB:IncHI1B hybrid plasmid pEBSI036-1-NDM-VIR also carried some virulence factors, including the regulator of the mucoid phenotype (rmpA), the regulator of mucoid phenotype 2 (rmpA2), and aerobactin (iucABCD and iutA). Thus, we set out in this study to analyze in depth the genetic basis of the pEBSI036-1-NDM-VIR and pEBSI036-2-KPC plasmids. We report a high-risk clone ST11 KL47 serotype of a CR-HvKP strain isolated from the blood of a 60-year-old hospitalized female patient from the intensive care unit (ICU) in a tertiary care hospital in Egypt, which showed the cohabitation of a novel hybrid plasmid coharboring the blaNDM-1 and virulence genes and a blaKPC-2-carrying plasmid.IMPORTANCE CRKP has been registered in the critical priority tier by the World Health Organization and has become a significant menace to public health. The emergence of CR-HvKP is of great concern in terms of both disease and treatment. In-depth analysis of the carbapenemase-encoding and virulence plasmids may provide insight into ongoing recombination and evolution of virulence and multidrug resistance in K. pneumoniae Thus, this study serves to alert contagious disease clinicians to the presence of hypervirulence in CRKP isolates in Egyptian hospitals.


Asunto(s)
Antibacterianos/farmacología , Carbapenémicos/farmacología , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/patogenicidad , Plásmidos/genética , Factores de Virulencia/genética , beta-Lactamasas/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Egipto , Femenino , Humanos , Lactante , Recién Nacido , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Centros de Atención Terciaria/estadística & datos numéricos , Adulto Joven
18.
Emerg Microbes Infect ; 10(1): 700-709, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33739229

RESUMEN

Bloodstream infections (BSIs) caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) are potentially life-threatening and an urgent threat to public health. The present study aims to clarify the characteristics of carbapenemase-encoding and virulent plasmids, and their interactions with the host bacterium. A total of 425 Kp isolates were collected from the blood of BSI patients from nine Chinese hospitals, between 2005 and 2019. Integrated epidemiological and genomic data showed that ST11 and ST307 Kp isolates were associated with nosocomial outbreak and transmission. Comparative analysis of 147 Kp genomes and 39 completely assembled chromosomes revealed extensive interruption of acrR by ISKpn26 in all Kp carbapenemase-2 (KPC-2)-producing ST11 Kp isolates, leading to activation of the AcrAB-Tolc multidrug efflux pump and a subsequent reduction in susceptibility to the last-resort antibiotic tigecycline and six other antibiotics. We described 29 KPC-2 plasmids showing diverse structures, two virulence plasmids in two KPC-2-producing Kp, and two novel multidrug-resistant (MDR)-virulent plasmids. This study revealed a multifactorial impact of KPC-2 plasmid on Kp, which may be associated with nosocomial dissemination of MDR isolates.


Asunto(s)
Antibacterianos/farmacología , Carbapenémicos/farmacología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/aislamiento & purificación , Sepsis/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , China/epidemiología , Farmacorresistencia Bacteriana , Humanos , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/patogenicidad , Pruebas de Sensibilidad Microbiana , Epidemiología Molecular , Mariposas Nocturnas , Filogenia , Sepsis/epidemiología , Virulencia , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
19.
Int Immunopharmacol ; 93: 107388, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33529913

RESUMEN

Endothelial dysfunction is a typical characteristic of sepsis. Endothelial nitric oxide synthase (eNOS) is important for maintaining endothelial function. Our previous study reported that the NLRP3 inflammasome promoted endothelial dysfunction by enhancing inflammation. However, the effects of NLRP3 on eNOS require further investigation. Therefore, the present study aimed to investigate the role of NLRP3 on eNOS expression levels in cecal ligation and puncture-induced impaired endothelium-dependent vascular relaxation and to determine the protective effects of melatonin. eNOS expression levels were discovered to be downregulated in the mesenteric arteries of sepsis model mice. Inhibiting NLRP3 with 10 mg/ kg MCC950 or inhibiting IL-1ß with 100 mg diacerein rescued the eNOS expression and improved endothelium-dependent vascular relaxation. In vitro, IL-1ß stimulation downregulated eNOS expression levels in human aortic endothelial cells (HAECs) in a concentration- and time-dependent manner, while pretreatment with 1 µM of the proteasome inhibitor MG132 reversed this effect. In addition, treatment with 10 mg/kg MG132 also prevented the proteolysis of eNOS and improved endothelium-dependent vascular relaxation in vivo. Notably, treatment with 30 mg/kg melatonin downregulated NLRP3 expression levels and decreased IL-1ß secretion, subsequently increasing the expression of eNOS and improving endothelium-dependent vascular relaxation. In conclusion, the findings of the present study indicated that the NLRP3/IL-1ß axis may impair vasodilation by promoting the proteolysis of eNOS and melatonin may protect against sepsis-induced endothelial relaxation dysfunction by inhibiting the NLRP3/IL-1ß axis, suggesting its pharmacological potential in sepsis.


Asunto(s)
Interleucina-1beta/fisiología , Melatonina/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Sepsis/tratamiento farmacológico , Vasodilatación/fisiología , Animales , Aorta/citología , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Humanos , Masculino , Melatonina/farmacología , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiología , Ratones Endogámicos C57BL , Proteolisis , Sepsis/metabolismo , Sepsis/fisiopatología , Vasodilatación/efectos de los fármacos
20.
Microvasc Res ; 133: 104075, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32950484

RESUMEN

OBJECTIVE: Phosphorylation plays an essential role in the regulation of endothelial nitric oxide synthase (eNOS) activity. However, the phosphorylation of eNOS under hypoglycemia and whether hypoglycemia changes eNOS activity is unknown. This paper aims to clarify the regulation of eNOS phosphorylation and its activity change under hypoglycemia. METHODS: Bovine aortic endothelial cells (BAECs) and Sprague-Dawley rats were treated with hypoglycemia, and the phosphorylation of eNOS was subjected to western blot. Blood nitric oxide (NO) concentration was determined by NO kit and endothelial-dependent vasodilation was detected by multi-wire myograph. RESULTS: In both BAECs and rats' thoracic aorta, hypoglycemia induced eNOS phosphorylation decrease specifically on Threonine (Thr) 497. Inhibition of ubiquitination of protein kinase C α subunit (PKCα) reverses the decrease of eNOS phosphorylation in hypoglycemia. Ubiquitinated PKCα can be reversed by AMPK knockdown. In rats, insulin induced hypoglycemia increased the concentration of NO in arterial blood, and progressively enhanced the endothelium-dependent vasodilation of the thoracic and mesenteric aorta. CONCLUSIONS: In vitro, the activation of AMPK may lead to the expression of PKCα by regulating ubiquitination, resulting in a decrease in the level of P-eNOS Thr497 phosphorylation under hypoglycemia. In vivo, insulin-induced hypoglycemia produces a beneficial cardiovascular effect on rats.


Asunto(s)
Aorta Torácica/enzimología , Células Endoteliales/enzimología , Hipoglucemia/enzimología , Arterias Mesentéricas/enzimología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Vasodilatación , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Aorta Torácica/fisiopatología , Glucemia/metabolismo , Bovinos , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Hipoglucemia/fisiopatología , Masculino , Arterias Mesentéricas/fisiopatología , Óxido Nítrico/sangre , Fosforilación , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-alfa/metabolismo , Ratas Sprague-Dawley , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA