Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
World J Gastroenterol ; 30(15): 2143-2154, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38681990

RESUMEN

BACKGROUND: Liver fibrosis is a compensatory response during the tissue repair process in chronic liver injury, and finally leads to liver cirrhosis or even hepatocellular carcinoma. The pathogenesis of hepatic fibrosis is associated with the progressive accumulation of activated hepatic stellate cells (HSCs), which can transdifferentiate into myofibroblasts to produce an excess of the extracellular matrix (ECM). Myofibroblasts are the main source of the excessive ECM responsible for hepatic fibrosis. Therefore, activated hepatic stellate cells (aHSCs), the principal ECM producing cells in the injured liver, are a promising therapeutic target for the treatment of hepatic fibrosis. AIM: To explore the effect of taurine on aHSC proliferation and the mechanisms involved. METHODS: Human HSCs (LX-2) were randomly divided into five groups: Normal control group, platelet-derived growth factor-BB (PDGF-BB) (20 ng/mL) treated group, and low, medium, and high dosage of taurine (10 mmol/L, 50 mmol/L, and 100 mmol/L, respectively) with PDGF-BB (20 ng/mL) treated group. Cell Counting Kit-8 method was performed to evaluate the effect of taurine on the viability of aHSCs. Enzyme-linked immunosorbent assay was used to estimate the effect of taurine on the levels of reactive oxygen species (ROS), malondialdehyde, glutathione, and iron concentration. Transmission electron microscopy was applied to observe the effect of taurine on the autophagosomes and ferroptosis features in aHSCs. Quantitative real-time polymerase chain reaction and Western blot analysis were performed to detect the effect of taurine on the expression of α-SMA, Collagen I, Fibronectin 1, LC3B, ATG5, Beclin 1, PTGS2, SLC7A11, and p62. RESULTS: Taurine promoted the death of aHSCs and reduced the deposition of the ECM. Treatment with taurine could alleviate autophagy in HSCs to inhibit their activation, by decreasing autophagosome formation, downregulating LC3B and Beclin 1 protein expression, and upregulating p62 protein expression. Meanwhile, treatment with taurine triggered ferroptosis and ferritinophagy to eliminate aHSCs characterized by iron overload, lipid ROS accumulation, glutathione depletion, and lipid peroxidation. Furthermore, bioinformatics analysis demonstrated that taurine had a direct targeting effect on nuclear receptor coactivator 4, exhibiting the best average binding affinity of -20.99 kcal/mol. CONCLUSION: Taurine exerts therapeutic effects on liver fibrosis via mechanisms that involve inhibition of autophagy and trigger of ferroptosis and ferritinophagy in HSCs to eliminate aHSCs.


Asunto(s)
Autofagia , Proliferación Celular , Ferroptosis , Células Estrelladas Hepáticas , Cirrosis Hepática , Especies Reactivas de Oxígeno , Taurina , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Autofagia/efectos de los fármacos , Taurina/farmacología , Ferroptosis/efectos de los fármacos , Cirrosis Hepática/patología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Becaplermina/farmacología , Becaplermina/metabolismo , Línea Celular , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Supervivencia Celular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
2.
Front Pharmacol ; 13: 972351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249818

RESUMEN

Objectives: Our goals were to evaluate the antidepressant efficacy of Yang-Xin-Jie-Yu Decoction (YXJYD) in Chronic Unpredictable Mild Stress (CUMS)-induced depression rat model and to investigate the underlying mechanisms. Design: We used CUMS-induced depression rat model to evaluate whether oral administration of YXJYD with different doses (2.1 g/kg, 1.05 g/kg and 0.525 g/kg, respectively) improve the depressive-like symptoms, and then performed UHPLC-Q-TOF-MS to explore the active ingredients of YXJYD. Subsequently, rat's cecal contents, serum, and urine were collected from the control group, CUMS model group, and YXJYD high-dose (2.1 g/kg) treatment group. The 16S rRNA sequencing was performed on the cecal contents, based on Illumina MiSeq platform, and ANOVA analysis were used to analyze the composition variety and screen differential expression of gut bacteria in the three groups. 1H Nuclear Magnetic Resonance (NMR) analysis was used for analyzing the metabolites obtained from cecal contents, serum, and urine, and KEGG enrichment analysis was used to identify pathways of differential metabolites. An integrated 16S rRNA sequencing and metabolomic data were conducted to characterize the underlying mechanisms of YXJYD Results: The gut microbial communities, and serum, cecal content, urine metabolic compositions were significantly significantly altered in CUMS-induced depressive rats, while YXJYD effectively ameliorated the CUMS-associated gut microbiota dysbiosis, especially of Monoglobus, and alleviated the disturbance of serum, cecal content, urine metabolome and reversed the changes of key depressive and gut microbiota-related metabolites, such as succinic acid, taurine, hippuric acid, melatonin. With an integrated study of the gut microbiota and metabolomes, we identified the pathway of tricarboxylic acid cycle (TCA cycle) and propanoate metabolism as the regulated target of YXJYD on host-microbiome interaction. Conclusion: Our findings further confirmed the imbalance of metabolism and intestinal microbial is closely related to CUMS-induced depression. YXJYD regulates gut microbiome to affect body metabolomes and then produce antidepressant-like effect in CUMS-induced depressive rats while its molecular mechanism possibly be increased Monoglobus abundance in gut microbiota and regulated the TCA cycle pathway and propanoate metabolism in host.

3.
J Ethnopharmacol ; 270: 113787, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33422657

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Weining granule (WNG) is a "Qi-Enriching and Kidney-Tonifying, Spleen-Reinforcing and Stasis-Removing" formula for gastric cancer (GC). Past research we noted WNG inhibited cell growth and raised apoptosis in GC. However, the underlying mechanism of WNG for GC have yet to be systematically clarified. AIM OF THE STUDY: We sought to characterize the molecular landscape of GC cells in vitro after WNG treated, to identify the molecular targets and pathways that were associated with WNG for inducing the apoptosis of GC cells, and further to clarify underlying molecular mechanism of WNG for GC. MATERIALS AND METHODS: We performed the techniques of RNA sequencing, tandem mass tags (TMT) based quantitative proteomics, and reduced representation bisulfite sequencing (RRBS) in WNG-treated/or untreated SGC-7901 GC cells to gain a comprehensive molecular portrait of WNG treatment. Then we integrated methylomics, transcriptomics, and proteomics data to carry out the bioinformatics analysis, and constructed the protein-protein interaction (PPI) network to identify molecular targets, and to discover the underlying signaling pathways associated with WNG for GC by network analysis. Besides, we verified the candidate target genes by Kaplan-Meier plotter database. RESULTS: We identified 1249 significant differentially expressed genes (DEGs) from RNA expression datasets, 191 significant differentially abunabundant proteins (DAPs) from proteomics datasets, and 8293 significant differentially methylated regions (DMRs) from DNA methylation datasets. GO and KEGG analysis showed DEGs, DAPs, and DMRs enriched in the cancer-related biological processes of calcium signaling pathway, pathways in cancer, metabolic pathways, MAPK signaling pathway, PI3K-Akt signaling pathway, and transcriptional misregulation in cancer. We integrated three profile datasets and performed network analysis to distinguish the hub genes, and finally the genes of SOD2, HMOX1, MMP1, SRXN1, NOTCH1, MAPK14, TXNIP, VEGFA, POLR2F, and HSPA9 were identified. The Kaplan-Meier plotter confirmed that SOD2, MMP1, SRXN1, NOTCH1, MAPK14, TXNIP, VEGFA, and HSPA9 were significantly correlated with OS in GC patients (P < 0.01), while HMOX1 and POLR2F expression were not significantly relevant to survival of GC patients (P > 0.01). CONCLUSIONS: SOD2, MMP1, SRXN1, NOTCH1, MAPK14, TXNIP, VEGFA, and HSPA9 were the predictive pharmaceutical targets of WNG for GC. The anticancer function of WNG was significantly associated with the pathways of focal adhesion pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, and Wnt signaling pathway.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Proteoma/efectos de los fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Transcriptoma/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Biología Computacional/métodos , Metilación de ADN/efectos de los fármacos , Bases de Datos Factuales , Medicamentos Herbarios Chinos/química , Epigénesis Genética , Epigenómica , Adhesiones Focales/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Estimación de Kaplan-Meier , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Oncogénica v-akt/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/mortalidad , Vía de Señalización Wnt/efectos de los fármacos
4.
World J Gastroenterol ; 25(9): 1067-1079, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30862995

RESUMEN

BACKGROUND: Studies show that the antifibrotic mechanism of taurine may involve its inhibition of the activation and proliferation of hepatic stellate cells (HSCs). Since the molecular mechanism of taurine-mediated antifibrotic activity has not been fully unveiled and is little studied, it is imperative to use "omics" methods to systematically investigate the molecular mechanism by which taurine inhibits liver fibrosis. AIM: To establish a network including transcriptomic and protein-protein interaction data to elucidate the molecular mechanism of taurine-induced HSC apoptosis. METHODS: We used microarrays, bioinformatics, protein-protein interaction (PPI) network, and sub-modules to investigate taurine-induced changes in gene expression in human HSCs (LX-2). Subsequently, all of the differentially expressed genes (DEGs) were subjected to gene ontology function and Kyoto encyclopedia of genes and genomes pathway enrichment analysis. Furthermore, the interactions of DEGs were explored in a human PPI network, and sub-modules of the DEGs interaction network were analyzed using Cytoscape software. RESULTS: A total of 635 DEGs were identified in taurine-treated HSCs when compared with the controls. Of these, 304 genes were statistically significantly up-regulated, and 331 down-regulated. Most of these DEGs were mainly located on the membrane and extracellular region, and are involved in the biological processes of signal transduction, cell proliferation, positive regulation of extracellular regulated protein kinases 1 (ERK1) and ERK2 cascade, extrinsic apoptotic signaling pathway and so on. Fifteen significantly enriched pathways with DEGs were identified, including mitogen-activated protein kinase (MAPK) signaling pathway, peroxisome proliferators-activated receptor signaling pathway, estrogen signaling pathway, Th1 and Th2 cell differentiation, cyclic adenosine monophosphate signaling pathway and so on. By integrating the transcriptomics and human PPI data, nine critical genes, including MMP2, MMP9, MMP21, TIMP3, KLF10, CX3CR1, TGFB1, VEGFB, and EGF, were identified in the PPI network analysis. CONCLUSION: Taurine promotes the apoptosis of HSCs via up-regulating TGFB1 and then activating the p38 MAPK-JNK-Caspase9/8/3 pathway. These findings enhance the understanding of the molecular mechanism of taurine-induced HSC apoptosis and provide references for liver disorder therapy.


Asunto(s)
Células Estrelladas Hepáticas/efectos de los fármacos , Cirrosis Hepática/tratamiento farmacológico , Sustancias Protectoras/farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos , Taurina/farmacología , Línea Celular , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Cirrosis Hepática/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Sustancias Protectoras/uso terapéutico , Taurina/uso terapéutico , Transcriptoma/efectos de los fármacos
5.
World J Gastroenterol ; 23(31): 5713-5721, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28883696

RESUMEN

AIM: To develop a reliable and simple method to identify important biological metabolites and relevant pathways for taurine in hepatic stellate cells (HSCs), in order to provide more data for taurine therapy. METHODS: All the biological samples were analyzed by using high-performance liquid chromatography-time electrospray ionization/quadrupole-time of flight mass spectrometry. Principal component analysis and partial least squares discriminant analysis were used to identify statistically different metabolites for taurine in HSCs, and metabolomic pathway analysis was used to do pathway analysis for taurine in HSCs. The chemical structure of the related metabolites and pathways was identified by comparing the m/z ratio and ion mode with the data obtained from free online databases. RESULTS: A total of 32 significant differential endogenous metabolites were identified, which may be related to the mechanism of action of taurine in HSCs. Among the seven relevant pathways identified, sphingolipid metabolism pathway, glutathione metabolism pathway and thiamine metabolism pathway were found to be the most important metabolic pathways for taurine in HSCs. CONCLUSION: This study showed that there were distinct changes in biological metabolites of taurine in HSCs and three differential metabolic pathways including sphingolipid pathway, glutathione pathway and thiamine metabolism pathway might be of key importance in mediating the mechanism of action of taurine in HSCs.


Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Redes y Vías Metabólicas , Metabolómica/métodos , Taurina/metabolismo , Línea Celular , Cromatografía Líquida de Alta Presión , Análisis Discriminante , Humanos , Análisis de los Mínimos Cuadrados , Metabolismo de los Lípidos , Metaboloma , Análisis de Componente Principal , Espectrometría de Masa por Ionización de Electrospray , Esfingolípidos/metabolismo
6.
Biomed Pharmacother ; 90: 100-108, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28343069

RESUMEN

BACKGROUND: The X protein (HBx) plays as a key role in hepatocarcinogenesis associated with hepatitis B virus (HBV) infections. The study aimed to figure out the role of Linc00152 in hepatocellular carcinoma (HCC) and the association between the expression levels of Linc00152 and HBx. METHODS: QRT-PCR assays were applied to analyzed the expression levels of Linc00152 and HBx. Kaplan-Meier survival curve was performed to identify the association between LINC00152 and the over survival time (OS) in HCC patients. Cell growth and invasion ability was evaluated by CCK8 cell proliferation and transwell invasion assays. Western-blot analysis was detected the protein expression. RNA immunoprecipitation (RIP), RNA-pull down and chromatin Immunoprecipitation (ChIP) assays was also been carried out. RESULTS: We demonstrated that LINC00152 expression in hepatocellular carcinoma (HCC) patients was significantly higher compared with adjacent non-tumour tissues and positively correlated with tumor size, HBV infection (HBsAg) and tumor number. Patient with hepatitis B virus (HBV) infection HCC was higher expression than that without HBV. Furthermore, the expression levels of Linc00152 were positively correlated with HBx expression in HCC tissues and higher Linc00152 expression levels were correlated with poor prognosis of HCC patients. In vitro, Linc00152 was up-regulated in Huh-7 and SM7721 cells after overexpression of HBx and down-regulated after silencing HBx. Furthermore, silencing Linc00152 suppressed the cell proliferation and invasion. Moreover, we found that Linc00152 inhibited the E-cadherin expression via interacting with EZH2 and promoted the Epithelial-mesenchymal transition (EMT) phenomenon in HCC cells. CONCLUSIONS: These results suggested that HBx enhanced LINC00152 expression and inhibition of LINC00152 could provide a therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virología , Virus de la Hepatitis B/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , ARN Largo no Codificante/genética , Cadherinas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Regulación hacia Abajo/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Células Hep G2 , Hepatitis B/genética , Hepatitis B/virología , Antígenos de Superficie de la Hepatitis B/genética , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Transducción de Señal/genética , Transactivadores/genética , Regulación hacia Arriba/genética , Proteínas Reguladoras y Accesorias Virales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...