Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2400238, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923264

RESUMEN

The placenta links feto-maternal circulation for exchanges of nutrients, gases, and metabolic wastes between the fetus and mother, being essential for pregnancy process and maintenance. The allantois and mesodermal components of amnion, chorion, and yolk sac are derived from extraembryonic mesoderm (Ex-Mes), however, the mechanisms contributing to distinct components of the placenta and regulation the interactions between allantois and epithelium during chorioallantoic fusion and labyrinth formation remains unclear. Isl1 is expressed in progenitors of the Ex-Mes and allantois the Isl1 mut mouse line is analyzed to investigate contribution of Isl1+ Ex-Mes / allantoic progenitors to cells of the allantois and placenta. This study shows that Isl1 identifies the Ex-Mes progenitors for endothelial and vascular smooth muscle cells, and most of the mesenchymal cells of the placenta and umbilical cord. Deletion of Isl1 causes defects in allantois growth, chorioallantoic fusion, and placenta vessel morphogenesis. RNA-seq and CUT&Tag analyses revealed that Isl1 promotes allantoic endothelial, inhibits mesenchymal cell differentiation, and allantoic signals regulated by Isl1 mediating the inductive interactions between the allantois and chorion critical for chorionic epithelium differentiation, villous formation, and labyrinth angiogenesis. This study above reveals that Isl1 plays roles in regulating multiple genetic and epigenetic pathways of vascular morphogenesis, provides the insight into the mechanisms for placental formation, highlighting the necessity of Isl1 for placenta formation/pregnant maintenance.

3.
Cell Tissue Res ; 391(1): 205-215, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36385586

RESUMEN

PINCH, an adaptor of focal adhesion complex, plays essential roles in multiple cellular processes and organogenesis. Here, we ablated PINCH1 or both of PINCH1 and PINCH2 in skeletal muscle progenitors using MyoD-Cre. Double ablation of PINCH1 and PINCH2 resulted in early postnatal lethality with reduced size of skeletal muscles and detachment of diaphragm muscles from the body wall. PINCH mutant myofibers failed to undergo multinucleation and exhibited disrupted sarcomere structures. The mutant myoblasts in culture were able to adhere to newly formed myotubes but impeded in cell fusion and subsequent sarcomere genesis and cytoskeleton organization. Consistent with this, expression of integrin ß1 and some cytoskeleton proteins and phosphorylation of ERK and AKT were significantly reduced in PINCH mutants. However, N-cadherin was correctly expressed at cell adhesion sites in PINCH mutant cells, suggesting that PINCH may play a direct role in myoblast fusion. Expression of MRF4, the most highly expressed myogenic factor at late stages of myogenesis, was abolished in PINCH mutants that could contribute to observed phenotypes. In addition, mice with PINCH1 being ablated in myogenic progenitors exhibited only mild centronuclear myopathic changes, suggesting a compensatory role of PINCH2 in myogenic differentiation. Our results revealed a critical role of PINCH proteins in myogenic differentiation.


Asunto(s)
Diferenciación Celular , Mioblastos Esqueléticos , Animales , Ratones , Adhesión Celular , Comunicación Celular , Adhesiones Focales/metabolismo , Músculo Esquelético/fisiología
4.
Cell Res ; 29(6): 486-501, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31024170

RESUMEN

Generation of widely differing and specialized cell types from a single totipotent zygote involves large-scale transcriptional changes and chromatin reorganization. Pioneer transcription factors play key roles in programming the epigenome and facilitating recruitment of additional regulatory factors during successive cell lineage specification and differentiation steps. Here we show that Isl1 acts as a pioneer factor driving cardiomyocyte lineage commitment by shaping the chromatin landscape of cardiac progenitor cells. Using an Isl1 hypomorphic mouse line which shows congenital heart defects, genome-wide profiling of Isl1 binding together with RNA- and ATAC-sequencing of cardiac progenitor cells and their derivatives, we uncover a regulatory network downstream of Isl1 that orchestrates cardiogenesis. Mechanistically, we show that Isl1 binds to compacted chromatin and works in concert with the Brg1-Baf60c-based SWI/SNF complex to promote permissive cardiac lineage-specific alterations in the chromatin landscape not only of genes with critical functions in cardiac progenitor cells, but also of cardiomyocyte structural genes that are highly expressed when Isl1 itself is no longer present. Thus, the Isl1/Brg1-Baf60c complex plays a crucial role in orchestrating proper cardiogenesis and in establishing epigenetic memory of cardiomyocyte fate commitment.


Asunto(s)
Epigénesis Genética/genética , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Células HEK293 , Humanos , Proteínas con Homeodominio LIM/deficiencia , Imagen por Resonancia Magnética , Ratones , Ratones Noqueados , Ratones Transgénicos , Factores de Transcripción/deficiencia
5.
Theranostics ; 9(4): 986-1000, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30867811

RESUMEN

Background: Transcription factor ISL1 plays a critical role in sympathetic neurogenesis. Expression of ISL1 has been associated with neuroblastoma, a pediatric tumor derived from sympatho-adrenal progenitors, however the role of ISL1 in neuroblastoma remains unexplored. Method: Here, we knocked down ISL1 (KD) in SH-SY5Y neuroblastoma cells and performed RNA-seq and ISL1 ChIP-seq analyses. Results: Analyses of these data revealed that ISL1 acts upstream of multiple oncogenic genes and pathways essential for neuroblastoma proliferation and differentiation, including LMO1 and LIN28B. ISL1 promotes expression of a number of cell cycle associated genes, but represses differentiation associated genes including RA receptors and the downstream target genes EPAS1 and CDKN1A. Consequently, Knockdown of ISL1 inhibits neuroblastoma cell proliferation and migration in vitro and impedes tumor growth in vivo, and enhances neuronal differentiation by RA treatment. Furthermore, genome-wide mapping revealed a substantial co-occupancy of binding regions by ISL1 and GATA3, and ISL1 physically interacts with GATA3, and together they synergistically regulate the aforementioned oncogenic pathways. In addition, analyses of the roles of ISL1 and MYCN in MYCN-amplified and MYCN non-amplified neuroblastoma cells revealed an epistatic relationship between ISL1 and MYCN. ISL1 and MYCN function in parallel to regulate common yet distinct oncogenic pathways in neuroblastoma. Conclusion: Our study has demonstrated that ISL1 plays an essential role in neuroblastoma regulatory networks and may serve as a potential therapeutic target in neuroblastoma.


Asunto(s)
Carcinogénesis , Factor de Transcripción GATA3/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/fisiopatología , Mapeo de Interacción de Proteínas , Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones SCID , Trasplante de Neoplasias , Unión Proteica , Análisis de Secuencia de ARN , Trasplante Heterólogo
6.
Am J Physiol Renal Physiol ; 315(2): F374-F385, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29638158

RESUMEN

Kidney development involves reciprocal and inductive interactions between the ureteric bud (UB) and surrounding metanephric mesenchyme. Signals from renal stromal lineages are essential for differentiation and patterning of renal epithelial and mesenchymal cell types and renal vasculogenesis; however, underlying mechanisms remain not fully understood. Integrin-linked kinase (ILK), a key component of integrin signaling pathway, plays an important role in kidney development. However, the role of ILK in renal stroma remains unknown. Here, we ablated ILK in renal stromal lineages using a platelet-derived growth factor receptor B ( Pdgfrb) -Cre mouse line, and the resulting Ilk mutant mice presented postnatal growth retardation and died within 3 wk of age with severe renal developmental defects. Pdgfrb-Cre;Ilk mutant kidneys exhibited a significant decrease in UB branching and disrupted collecting duct formation. From E16.5 onward, renal interstitium was disorganized, forming medullary interstitial pseudocysts. Pdgfrb-Cre;Ilk mutants exhibited renal vasculature mispatterning and impaired glomerular vascular differentiation. Impaired glial cell-derived neurotrophic factor/Ret and bone morphogenetic protein 7 signaling pathways were observed in Pdgfrb-Cre;Ilk mutant kidneys. Furthermore, phosphoproteomic and Western blot analyses revealed a significant dysregulation of a number of key signaling pathways required for kidney morphogenesis, including PI3K/AKT and MAPK/ERK in Pdgfrb-Cre;Ilk mutants. Our results revealed a critical requirement for ILK in renal-stromal and vascular development, as well as a noncell autonomous role of ILK in UB branching morphogenesis.


Asunto(s)
Riñón/enzimología , Enfermedades Renales Poliquísticas/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Células del Estroma/enzimología , Animales , Proteína Morfogenética Ósea 7/genética , Proteína Morfogenética Ósea 7/metabolismo , Diferenciación Celular , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Edad Gestacional , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Integrasas/genética , Integrasas/metabolismo , Riñón/anomalías , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Morfogénesis , Fenotipo , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal
7.
Cell Death Dis ; 9(2): 247, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445148

RESUMEN

Malformations of the sympathetic nervous system have been associated with cardiovascular instability, gastrointestinal dysfunction, and neuroblastoma. A better understanding of the factors regulating sympathetic nervous system development is critical to the development of potential therapies. Here, we have uncovered a temporal requirement for the LIM homeodomain transcription factor ISL1 during sympathetic nervous system development by the analysis of two mutant mouse lines: an Isl1 hypomorphic line and mice with Isl1 ablated in neural crest lineages. During early development, ISL1 is required for sympathetic neuronal fate determination, differentiation, and repression of glial differentiation, although it is dispensable for initial noradrenergic differentiation. ISL1 also plays an essential role in sympathetic neuron proliferation by controlling cell cycle gene expression. During later development, ISL1 is required for axon growth and sympathetic neuron diversification by maintaining noradrenergic differentiation, but repressing cholinergic differentiation. RNA-seq analyses of sympathetic ganglia from Isl1 mutant and control embryos, together with ISL1 ChIP-seq analysis on sympathetic ganglia, demonstrated that ISL1 regulates directly or indirectly several distinct signaling pathways that orchestrate sympathetic neurogenesis. A number of genes implicated in neuroblastoma pathogenesis are direct downstream targets of ISL1. Our study revealed a temporal requirement for ISL1 in multiple aspects of sympathetic neuron development, and suggested Isl1 as a candidate gene for neuroblastoma.


Asunto(s)
Neuronas Adrenérgicas/metabolismo , Neuronas Colinérgicas/metabolismo , Ganglios Simpáticos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas con Homeodominio LIM/genética , Neuroblastoma/genética , Factores de Transcripción/genética , Neuronas Adrenérgicas/citología , Animales , Secuencia de Bases , Ciclo Celular/genética , Diferenciación Celular , Linaje de la Célula/genética , Proliferación Celular , Neuronas Colinérgicas/citología , Embrión de Mamíferos , Ganglios Simpáticos/citología , Humanos , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Transgénicos , Cresta Neural/citología , Cresta Neural/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neurogénesis/genética , Cultivo Primario de Células , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/metabolismo
8.
Cell Mol Life Sci ; 74(7): 1247-1259, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27770149

RESUMEN

The sinoatrial node (SAN) is the dominant pacemaker of the heart. Abnormalities in SAN formation and function can cause sinus arrhythmia, including sick sinus syndrome and sudden death. A better understanding of genes and signaling pathways that regulate SAN development and function is essential to develop more effective treatment to sinus arrhythmia, including biological pacemakers. In this review, we briefly summarize the key processes of SAN morphogenesis during development, and focus on the transcriptional network that drives SAN development.


Asunto(s)
Cardiopatías/terapia , Marcapaso Artificial , Arritmia Sinusal/etiología , Arritmia Sinusal/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas con Homeodominio LIM/metabolismo , Marcapaso Artificial/efectos adversos , Nodo Sinoatrial/metabolismo , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo
9.
eNeuro ; 3(2)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27257624

RESUMEN

Prevention of auditory hair cell death offers therapeutic potential to rescue hearing. Pharmacological blockade of JNK/c-Jun signaling attenuates injury-induced hair cell loss, but with unsolved mechanisms. We have characterized the c-Jun stress response in the mouse cochlea challenged with acoustic overstimulation and ototoxins, by studying the dynamics of c-Jun N-terminal phosphorylation. It occurred acutely in glial-like supporting cells, inner hair cells, and the cells of the cochlear ion trafficking route, and was rapidly downregulated after exposures. Notably, death-prone outer hair cells lacked c-Jun phosphorylation. As phosphorylation was triggered also by nontraumatic noise levels and none of the cells showing this activation were lost, c-Jun phosphorylation is a biomarker for cochlear stress rather than an indicator of a death-prone fate of hair cells. Preconditioning with a mild noise exposure before a stronger traumatizing noise exposure attenuated the cochlear c-Jun stress response, suggesting that the known protective effect of sound preconditioning on hearing is linked to suppression of c-Jun activation. Finally, mice with mutations in the c-Jun N-terminal phosphoacceptor sites showed partial, but significant, hair cell protection. These data identify the c-Jun stress response as a paracrine mechanism that mediates outer hair cell death.


Asunto(s)
Biomarcadores/metabolismo , Células Ciliadas Vestibulares/metabolismo , Pérdida Auditiva Provocada por Ruido/patología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Traumatismos del Nervio Vestibulococlear/patología , Animales , Animales Recién Nacidos , Apoptosis , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Kanamicina/toxicidad , Masculino , Ratones , Ratones Endogámicos CBA , Ratones Transgénicos , Ruido/efectos adversos , Inhibidores de la Síntesis de la Proteína/toxicidad , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Traumatismos del Nervio Vestibulococlear/inducido químicamente
10.
J Clin Invest ; 125(8): 3256-68, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26193633

RESUMEN

The sinoatrial node (SAN) maintains a rhythmic heartbeat; therefore, a better understanding of factors that drive SAN development and function is crucial to generation of potential therapies, such as biological pacemakers, for sinus arrhythmias. Here, we determined that the LIM homeodomain transcription factor ISL1 plays a key role in survival, proliferation, and function of pacemaker cells throughout development. Analysis of several Isl1 mutant mouse lines, including animals harboring an SAN-specific Isl1 deletion, revealed that ISL1 within SAN is a requirement for early embryonic viability. RNA-sequencing (RNA-seq) analyses of FACS-purified cells from ISL1-deficient SANs revealed that a number of genes critical for SAN function, including those encoding transcription factors and ion channels, were downstream of ISL1. Chromatin immunoprecipitation assays performed with anti-ISL1 antibodies and chromatin extracts from FACS-purified SAN cells demonstrated that ISL1 directly binds genomic regions within several genes required for normal pacemaker function, including subunits of the L-type calcium channel, Ank2, and Tbx3. Other genes implicated in abnormal heart rhythm in humans were also direct ISL1 targets. Together, our results demonstrate that ISL1 regulates approximately one-third of SAN-specific genes, indicate that a combination of ISL1 and other SAN transcription factors could be utilized to generate pacemaker cells, and suggest ISL1 mutations may underlie sick sinus syndrome.


Asunto(s)
Proliferación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas con Homeodominio LIM/metabolismo , Contracción Miocárdica/fisiología , Nodo Sinoatrial/embriología , Factores de Transcripción/metabolismo , Animales , Ancirinas/genética , Ancirinas/metabolismo , Supervivencia Celular , Cromatina/genética , Cromatina/metabolismo , Eliminación de Gen , Proteínas con Homeodominio LIM/genética , Ratones , Ratones Transgénicos , Unión Proteica , Síndrome del Seno Enfermo/embriología , Síndrome del Seno Enfermo/genética , Síndrome del Seno Enfermo/patología , Nodo Sinoatrial/citología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/genética
11.
J Cell Mol Med ; 19(9): 2143-52, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26059563

RESUMEN

The voltage-gated Na(+) channel Nav 1.5 is essential for action potential (AP) formation and electrophysiological homoeostasis in the heart. The ubiquitin-proteasome system (UPS) is a major degradative system for intracellular proteins including ion channels. The ubiquitin protein ligase E3 component N-recognin (UBR) family is a part of the UPS; however, their roles in regulating cardiac Nav 1.5 channels remain elusive. Here, we found that all of the UBR members were expressed in cardiomyocytes. Individual knockdown of UBR3 or UBR6, but not of other UBR members, significantly increased Nav 1.5 protein levels in neonatal rat ventricular myocytes, and this effect was verified in HEK293T cells expressing Nav 1.5 channels. The UBR3/6-dependent regulation of Nav 1.5 channels was not transcriptionally mediated, and pharmacological inhibition of protein biosynthesis failed to counteract the increase in Nav 1.5 protein caused by UBR3/6 reduction, suggesting a degradative modulation of UBR3/6 on Nav 1.5. Furthermore, the effects of UBR3/6 knockdown on Nav 1.5 proteins were abolished under the inhibition of proteasome activity, and UBR3/6 knockdown reduced Nav 1.5 ubiquitylation. The double UBR3-UBR6 knockdown resulted in comparable increases in Nav 1.5 proteins to that observed for single knockdown of either UBR3 or UBR6. Electrophysiological recordings showed that UBR3/6 reduction-mediated increase in Nav 1.5 protein enhanced the opening of Nav 1.5 channels and thereby the amplitude of the AP. Thus, our findings indicate that UBR3/6 regulate cardiomyocyte Nav 1.5 channel protein levels via the ubiquitin-proteasome pathway. It is likely that UBR3/6 have the potential to be a therapeutic target for cardiac arrhythmias.


Asunto(s)
Miocardio/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Proteínas de Neoplasias/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Potenciales de Acción , Animales , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Miocitos Cardíacos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , ARN Interferente Pequeño/metabolismo , Ratas Sprague-Dawley
12.
Cardiovasc Res ; 107(2): 216-25, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25987543

RESUMEN

AIMS: Nebulette is a 109 kDa modular protein localized in the sarcomeric Z-line of the heart. In vitro studies have suggested a role of nebulette in stabilizing the thin filament, and missense mutations in the nebulette gene were recently shown to be causative for dilated cardiomyopathy and endocardial fibroelastosis in human and mice. However, the role of nebulette in vivo has remained elusive. To provide insights into the function of nebulette in vivo, we generated and studied nebulette-deficient (nebl(-) (/-)) mice. METHODS AND RESULTS: Nebl(-) (/-) mice were generated by replacement of exon 1 by Cre under the control of the endogenous nebulette promoter, allowing for lineage analysis using the ROSA26 Cre reporter strain. This revealed specific expression of nebulette in the heart, consistent with in situ hybridization results. Nebl(-) (/-) mice exhibited normal cardiac function both under basal conditions and in response to transaortic constriction as assessed by echocardiography and haemodynamic analyses. Furthermore, histological, IF, and western blot analysis showed no cardiac abnormalities in nebl(-) (/-) mice up to 8 months of age. In contrast, transmission electron microscopy showed Z-line widening starting from 5 months of age, suggesting that nebulette is important for the integrity of the Z-line. Furthermore, up-regulation of cardiac stress responsive genes suggests the presence of chronic cardiac stress in nebl(-) (/-) mice. CONCLUSION: Nebulette is dispensable for normal cardiac function, although Z-line widening and up-regulation of cardiac stress markers were found in nebl(-) (/-) heart. These results suggest that the nebulette disease causing mutations have dominant gain-of-function effects.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas con Dominio LIM/metabolismo , Mutación/genética , Miocitos Cardíacos/metabolismo , Sarcómeros/fisiología , Estrés Fisiológico , Citoesqueleto de Actina/genética , Animales , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/deficiencia , Citoesqueleto/genética , Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Proteínas con Dominio LIM/deficiencia , Ratones Noqueados , Proteínas Musculares/genética , Miocardio/metabolismo , Regulación hacia Arriba
13.
Trends Cardiovasc Med ; 25(1): 1-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25442735

RESUMEN

Specialized myocytes of the cardiac conduction system (CCS) are essential to coordinate sequential contraction of cardiac atria and ventricles. Anomalies of the CCS can result in lethal cardiac arrhythmias, including sick sinus syndrome and atrial or ventricular fibrillation. To develop future therapies and regenerative medicine aimed at cardiac arrhythmias, it is important to understand formation and function of distinct components of the CCS. Essential to this understanding is the development of CCS-specific markers. In this review, we briefly summarize available mouse models of CCS markers and focus on those involving the hyperpolarization cation-selective nucleotide-gated cation channel, HCN4, which selectively marks all components of the specialized CCS in adult heart. Recent studies have revealed, however, that HCN4 expression during development is highly dynamic in cardiac precursors. These studies have offered insights into the contributions of the first and second heart field to myocyte and conduction system lineages and suggested the timing of allocation of specific conduction system precursors during development. Altogether, they have highlighted the utility of HCN4 as a cell surface marker for distinct components of the CCS at distinct stages of development, which can be utilized to facilitate purification and characterization of CCS precursors in mouse and human model systems and pave the way for regenerative therapies.


Asunto(s)
Biomarcadores/metabolismo , Sistema de Conducción Cardíaco/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Proteínas Musculares/metabolismo , Canales de Potasio/metabolismo , Animales , Linaje de la Célula , Sistema de Conducción Cardíaco/citología , Ratones
14.
J Cell Mol Med ; 18(9): 1830-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24889693

RESUMEN

Tetralogy of Fallot (TOF) is a complex congenital heart defect and the microRNAs regulation in TOF development is largely unknown. Herein, we explored the role of miRNAs in TOF. Among 75 dysregulated miRNAs identified from human heart tissues, miRNA-940 was the most down-regulated one. Interestingly, miRNA-940 was most highly expressed in normal human right ventricular out-flow tract comparing to other heart chambers. As TOF is caused by altered proliferation, migration and/or differentiation of the progenitor cells of the secondary heart field, we isolated Sca-1(+) human cardiomyocyte progenitor cells (hCMPC) for miRNA-940 function analysis. miRNA-940 reduction significantly promoted hCMPCs proliferation and inhibited hCMPCs migration. We found that JARID2 is an endogenous target regulated by miRNA-940. Functional analyses showed that JARID2 also affected hCMPCs proliferation and migration. Thus, decreased miRNA-940 affects the proliferation and migration of the progenitor cells of the secondary heart field by targeting JARID2 and potentially leads to TOF development.


Asunto(s)
Células Madre Adultas/fisiología , MicroARNs/genética , Complejo Represivo Polycomb 2/genética , Tetralogía de Fallot/metabolismo , Apoptosis , Secuencia de Bases , Sitios de Unión , Estudios de Casos y Controles , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Regulación hacia Abajo , Humanos , MicroARNs/metabolismo , Miocitos Cardíacos/fisiología , Complejo Represivo Polycomb 2/metabolismo , Interferencia de ARN , Tetralogía de Fallot/genética , Tetralogía de Fallot/patología , Transcriptoma
15.
BMC Biol ; 11: 107, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24131868

RESUMEN

BACKGROUND: Neural crest defects lead to congenital heart disease involving outflow tract malformation. Integrin-linked-kinase (ILK) plays important roles in multiple cellular processes and embryogenesis. ILK is expressed in the neural crest, but its role in neural crest and outflow tract morphogenesis remains unknown. RESULTS: We ablated ILK specifically in the neural crest using the Wnt1-Cre transgene. ILK ablation resulted in abnormal migration and overpopulation of neural crest cells in the pharyngeal arches and outflow tract and a significant reduction in the expression of neural cell adhesion molecule (NCAM) and extracellular matrix components. ILK mutant embryos exhibited an enlarged common arterial trunk and ventricular septal defect. Reduced smooth muscle differentiation, but increased ossification and neurogenesis/innervation were observed in ILK mutant outflow tract that may partly be due to reduced transforming growth factor ß2 (TGFß2) but increased bone morphogenetic protein (BMP) signaling. Consistent with these observations, microarray analysis of fluorescence-activated cell sorting (FACS)-sorted neural crest cells revealed reduced expression of genes associated with muscle differentiation, but increased expression of genes of neurogenesis and osteogenesis. CONCLUSIONS: Our results demonstrate that ILK plays essential roles in neural crest and outflow tract development by mediating complex crosstalk between cell matrix and multiple signaling pathways. Changes in these pathways may collectively result in the unique neural crest and outflow tract phenotypes observed in ILK mutants.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Cresta Neural/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Adhesión Celular , Embrión de Mamíferos , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Músculo Liso/citología , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Cresta Neural/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta2/metabolismo , Proteína Wnt1/genética
16.
Gene Expr Patterns ; 13(8): 407-12, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23906961

RESUMEN

The LIM-homeodomain transcription factor Isl1 plays essential roles in cell proliferation, differentiation and survival during embryogenesis. To better visualize Isl1 expression and provide insight into the role of Isl1 during development, we generated an Isl1 nuclear LacZ (nLacZ) knockin mouse line. We have analyzed Isl1nlacZ expression during development by Xgal staining, and compared expression of Isl1nlacZ with endogenous Isl1 by coimmunostaining with antibodies to Isl1 and ß-galactosidase. Results demonstrated that during development, Isl1 nLacZ is expressed in a pattern that recapitulates endogenous Isl1 protein expression. Consistent with previous in situ and immunohistochemistry data, we observed Isl1nlacZ expression in multiple tissues and cell types, including the central and peripheral nervous system, neural retina, inner ear, pharyngeal mesoderm and endoderm and their derivatives (craniofacial structures, thymus, thyroid gland and trachea), cardiovascular system (cardiac outflow tract, carotid arteries, umbilical vessels, sinoatrial node and atrial septum), gastrointestinal system (oral epithelium, stomach, pancreas, mesentery) and hindlimb.


Asunto(s)
Expresión Génica , Proteínas con Homeodominio LIM/metabolismo , Factores de Transcripción/metabolismo , Animales , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Proteínas con Homeodominio LIM/genética , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Especificidad de Órganos , Factores de Transcripción/genética
17.
J Cell Mol Med ; 17(9): 1119-27, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23837875

RESUMEN

Sarcolemmal Na(+) /H(+) exchanger 1 (NHE1) activity is essential for the intracellular pH (pHi ) homeostasis in cardiac myocytes. Emerging evidence indicates that sarcolemmal NHE1 dysfunction was closely related to cardiomyocyte death, but it remains unclear whether defective trafficking of NHE1 plays a role in the vital cellular signalling processes. Dynamin (DNM), a large guanosine triphosphatase (GTPase), is best known for its roles in membrane trafficking events. Herein, using co-immunoprecipitation, cell surface biotinylation and confocal microscopy techniques, we investigated the potential regulation on cardiac NHE1 activity by DNM. We identified that DNM2, a cardiac isoform of DNM, directly binds to NHE1. Overexpression of a wild-type DNM2 or a dominant-negative DNM2 mutant with defective GTPase activity in adult rat ventricular myocytes (ARVMs) facilitated or retarded the internalization of sarcolemmal NHE1, whereby reducing or increasing its activity respectively. Importantly, the increased NHE1 activity associated with DNM2 deficiency led to ARVMs apoptosis, as demonstrated by cell viability, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assay, Bcl-1/Bax expression and caspase-3 activity, which were effectively rescued by pharmacological inhibition of NHE1 with zoniporide. Thus, our results demonstrate that disruption of the DNM2-dependent retrograde trafficking of NHE1 contributes to cardiomyocyte apoptosis.


Asunto(s)
Apoptosis , Dinamina II/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Supervivencia Celular , Dinamina II/deficiencia , Células HEK293 , Ventrículos Cardíacos/citología , Humanos , Masculino , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Sarcolema/metabolismo
18.
Circ Res ; 113(4): 399-407, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23743334

RESUMEN

RATIONALE: To date, there has been no specific marker of the first heart field to facilitate understanding of contributions of the first heart field to cardiac lineages. Cardiac arrhythmia is a leading cause of death, often resulting from abnormalities in the cardiac conduction system (CCS). Understanding origins and identifying markers of CCS lineages are essential steps toward modeling diseases of the CCS and for development of biological pacemakers. OBJECTIVE: To investigate HCN4 as a marker for the first heart field and for precursors of distinct components of the CCS, and to gain insight into contributions of first and second heart lineages to the CCS. METHODS AND RESULTS: HCN4CreERT2, -nuclear LacZ, and -H2BGFP mouse lines were generated. HCN4 expression was examined by means of immunostaining with HCN4 antibody and reporter gene expression. Lineage studies were performed using HCN4CreERT2, Isl1Cre, Nkx2.5Cre, and Tbx18Cre, coupled to coimmunostaining with CCS markers. Results demonstrated that, at cardiac crescent stages, HCN4 marks the first heart field, with HCN4CreERT2 allowing assessment of cell fates adopted by first heart field myocytes. Throughout embryonic development, HCN4 expression marked distinct CCS precursors at distinct stages, marking the entire CCS by late fetal stages. We also noted expression of HCN4 in distinct subsets of endothelium at specific developmental stages. CONCLUSIONS: This study provides insight into contributions of first and second heart lineages to the CCS and highlights the potential use of HCN4 in conjunction with other markers for optimization of protocols for generation and isolation of specific conduction system precursors.


Asunto(s)
Sistema de Conducción Cardíaco/citología , Sistema de Conducción Cardíaco/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre/metabolismo , Animales , Relojes Biológicos/genética , Biomarcadores/metabolismo , Linaje de la Célula , Femenino , Técnicas de Sustitución del Gen , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Operón Lac/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Miocitos Cardíacos/citología , Células Madre/citología
19.
J Mol Cell Cardiol ; 53(6): 751-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22982025

RESUMEN

Human cardiomyocyte progenitor cells (hCMPCs) are cardiac progenitor cells that are unique for their efficient differentiation into beating cardiomyocytes without requiring co-culture with neonatal cardiomyocytes. hCMPCs have shown great potential in preserving the function of infarcted mouse myocardium. MiRNA-204 has been reported to be up-regulated in differentiated hCMPCs, however, its biological significance is unclear. In this study, hCMPC proliferation, viability, apoptosis and necrosis were determined using the ELISA Kit (colorimetric BrdU detection), Cell Counting Kit-8, and Annexin V and propidium iodide staining, respectively. MiRNA-204 inhibition promoted hCMPC proliferation without affecting cell viability and the level of apoptosis and necrosis, indicating that miRNA-204 might be required for hCMPC differentiation. Quantitative reverse transcriptase-polymerase chain reactions were used to detect the expression profile of cardiac genes, including MEF2C, GATA-4, Nkx-2.5, TropT, ßMHC, and cActin. Cardiac α-actin staining was used to quantify the degree of differentiation. MiRNA-204 inhibition significantly down-regulated TropT, ßMHC, and cActin and reduced differentiation by 47.81% after 2 weeks of differentiation induction. Interestingly, miRNA-204 mimics (30 nM) did not promote hCMPC proliferation and differentiation. The bioinformatic tool GOmir identified the activating transcription factor 2 (ATF-2) as a potential target, which was confirmed by Western blot and a luciferase reporter assay. ATF-2 overexpression promoted hCMPC proliferation, further demonstrating the role played by ATF-2 as a target gene of miRNA-204. Therefore, miRNA-204 is required for hCMPC differentiation and ATF-2 is a target gene of miRNA-204 in hCMPCs. This study indicates that miRNA-204 is among the regulators that drive hCMPC proliferation and differentiation, and miRNA-204 might be used to influence cell fate.


Asunto(s)
Diferenciación Celular/genética , MicroARNs/genética , Mioblastos Cardíacos/citología , Mioblastos Cardíacos/metabolismo , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Animales , Apoptosis/genética , Secuencia de Bases , Supervivencia Celular/genética , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Ratones , Datos de Secuencia Molecular , Miocardio/metabolismo , Necrosis/genética , Alineación de Secuencia
20.
J Transl Med ; 9: 159, 2011 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-21943159

RESUMEN

BACKGROUND: Acute pulmonary embolism (APE) remains a diagnostic challenge due to a variable clinical presentation and the lack of a reliable screening tool. MicroRNAs (miRNAs) regulate gene expression in a wide range of pathophysiologic processes. Circulating miRNAs are emerging biomarkers in heart failure, type 2 diabetes and other disease states; however, using plasma miRNAs as biomarkers for the diagnosis of APE is still unknown. METHODS: Thirty-two APE patients, 32 healthy controls, and 22 non-APE patients (reported dyspnea, chest pain, or cough) were enrolled in this study. The TaqMan miRNA microarray was used to identify dysregulated miRNAs in the plasma of APE patients. The TaqMan-based miRNA quantitative real-time reverse transcription polymerase chain reactions were used to validate the dysregulated miRNAs. The receiver-operator characteristic (ROC) curve analysis was conducted to evaluate the diagnostic accuracy of the miRNA identified as the candidate biomarker. RESULTS: Plasma miRNA-134 (miR-134) level was significantly higher in the APE patients than in the healthy controls or non-APE patients. The ROC curve showed that plasma miR-134 was a specific diagnostic predictor of APE with an area under the curve of 0.833 (95% confidence interval, 0.737 to 0.929; P < 0.001). CONCLUSIONS: Our findings indicated that plasma miR-134 could be an important biomarker for the diagnosis of APE. Because of this finding, large-scale investigations are urgently needed to pave the way from basic research to clinical utilization.


Asunto(s)
MicroARNs/sangre , Embolia Pulmonar/sangre , Embolia Pulmonar/diagnóstico , Enfermedad Aguda , Biomarcadores/sangre , Estudios de Casos y Controles , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Curva ROC , Reproducibilidad de los Resultados , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...