RESUMEN
Laser-based light detection and ranging (LIDAR) offers a powerful tool to real-timely map spatial information with exceptional accuracy and owns various applications ranging from industrial manufacturing, and remote sensing, to airborne and in-vehicle missions. Over the past two decades, the rapid advancements of optical frequency combs have ushered in a new era for LIDAR, promoting measurement precision to quantum noise limited level. For comb LIDAR systems, to further improve the comprehensive performances and reconcile inherent conflicts between speed, accuracy, and ambiguity range, innovative demodulation strategies become crucial. Here we report a dispersive Fourier transform (DFT) based LIDAR method utilizing phase-locked Vernier dual soliton laser combs. We demonstrate that after in-line pulse stretching, the delay of the flying pulses can be identified via the DFT-based spectral interferometry instead of temporal interferometry or pulse reconstruction. This enables absolute distance measurements with precision starting from 262 nm in single shot, to 2.8 nm after averaging 1.5 ms, in a non-ambiguity range over 1.7 km. Furthermore, our DFT-based LIDAR method distinctly demonstrates an ability to completely eliminate dead zones. Such an integration of frequency-resolved ultrafast analysis and dual-comb ranging technology may pave a way for the design of future LIDAR systems.
RESUMEN
OBJECTIVE: Studies have demonstrated that cycloastragenol induces antitumor effects in prostate, colorectal and gastric cancers; however, its efficacy for inhibiting the proliferation of lung cancer cells is largely unexplored. This study explores the efficacy of cycloastragenol for inhibiting non-small cell lung cancer (NSCLC) and elucidates the underlying molecular mechanisms. METHODS: The effects of cycloastragenol on lung cancer cell proliferation were assessed using an adenosine triphosphate monitoring system based on firefly luciferase and clonogenic formation assays. Cycloastragenol-induced apoptosis in lung cancer cells was evaluated using dual staining flow cytometry with an annexin V-fluorescein isothiocyanate/propidium iodide kit. To elucidate the role of cycloastragenol in the induction of apoptosis, apoptosis-related proteins were examined using Western blots. Immunofluorescence and Western blotting were used to determine whether cycloastragenol could induce autophagy in lung cancer cells. Genetic techniques, including small interfering RNA technology, were used to investigate the underlying mechanisms. The effects against lung cancer and biosafety of cycloastragenol were evaluated using a mouse subcutaneous tumor model. RESULTS: Cycloastragenol triggered both autophagy and apoptosis. Specifically, cycloastragenol promoted apoptosis by facilitating the accumulation of phorbol-12-myristate-13-acetate-induced protein 1 (NOXA), a critical apoptosis-related protein. Moreover, cycloastragenol induced a protective autophagy response through modulation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)/unc-51-like autophagy-activating kinase (ULK1)/mammalian target of rapamycin (mTOR) pathway. CONCLUSION: Our study sheds new light on the antitumor efficacy and mechanism of action of cycloastragenol in NSCLC. This insight provides a scientific basis for exploring combination therapies that use cycloastragenol and inhibiting the AMPK/ULK1/mTOR pathway as a promising approach to combating lung cancer. Please cite this article as follows: Zhu LH, Liang YP, Yang L, Zhu F, Jia LJ, Li HG. Cycloastragenolinduces apoptosis and protective autophagy through AMPK/ULK1/mTOR axis in human non-small celllung cancer cell lines. J Integr Med. 2024; 22(4): 504-515.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Apoptosis , Homólogo de la Proteína 1 Relacionada con la Autofagia , Autofagia , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Serina-Treonina Quinasas TOR , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis/efectos de los fármacos , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Animales , Autofagia/efectos de los fármacos , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ratones Desnudos , Ratones Endogámicos BALB C , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genéticaRESUMEN
AQP3 (aquaporin 3 (Gill blood group)), a member of the AQP family, is an aquaglyceroporin which transports water, glycerol and small solutes across the plasma membrane. Beyond its role in fluid transport, AQP3 plays a significant role in regulating various aspects of tumor cell behavior, including cell proliferation, migration, and invasion. Nevertheless, the underlying regulatory mechanism of AQP3 in tumors remains unclear. Here, for the first time, we report that AQP3 is a direct target for ubiquitination by the SCFFBXW5 complex. In addition, we revealed that downregulation of FBXW5 significantly induced AQP3 expression to prompt macroautophagic/autophagic cell death in hepatocellular carcinoma (HCC) cells. Mechanistically, AQP3 accumulation induced by FBXW5 knockdown led to the degradation of PDPK1/PDK1 in a lysosomal-dependent manner, thus inactivating the AKT-MTOR pathway and inducing autophagic death in HCC. Taken together, our findings revealed a previously undiscovered regulatory mechanism through which FBXW5 degraded AQP3 to suppress autophagic cell death via the PDPK1-AKT-MTOR axis in HCC cells.Abbreviation: BafA1: bafilomycin A1; CQ: chloroquine; CRL: CUL-Ring E3 ubiquitin ligases; FBXW5: F-box and WD repeat domain containing 5; HCC: hepatocellular carcinoma; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; 3-MA: 3-methyladenine; PDPK1/PDK1: 3-phosphoinositide dependent protein kinase 1; RBX1/ROC1: ring-box 1; SKP1: S-phase kinase associated protein 1; SCF: SKP1-CUL1-F-box protein.
Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Acuaporina 3 , Autofagia , Carcinoma Hepatocelular , Proteínas F-Box , Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Autofagia/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Acuaporina 3/metabolismo , Acuaporina 3/genética , Proteínas F-Box/metabolismo , Línea Celular Tumoral , Ubiquitinación , Proteolisis , Lisosomas/metabolismo , AnimalesRESUMEN
The advancement of unmanned aerial vehicles (UAVs) enables early detection of numerous disasters. Efforts have been made to automate the monitoring of data from UAVs, with machine learning methods recently attracting significant interest. These solutions often face challenges with high computational costs and energy usage. Conventionally, data from UAVs are processed using cloud computing, where they are sent to the cloud for analysis. However, this method might not meet the real-time needs of disaster relief scenarios. In contrast, edge computing provides real-time processing at the site but still struggles with computational and energy efficiency issues. To overcome these obstacles and enhance resource utilization, this paper presents a convolutional neural network (CNN) model with an early exit mechanism designed for fire detection in UAVs. This model is implemented using TSMC 40 nm CMOS technology, which aids in hardware acceleration. Notably, the neural network has a modest parameter count of 11.2 k. In the hardware computation part, the CNN circuit completes fire detection in approximately 230,000 cycles. Power-gating techniques are also used to turn off inactive memory, contributing to reduced power consumption. The experimental results show that this neural network reaches a maximum accuracy of 81.49% in the hardware implementation stage. After automatic layout and routing, the CNN hardware accelerator can operate at 300 MHz, consuming 117 mW of power.
RESUMEN
Since their inception, frequency combs generated in microresonators, known as microcombs, have sparked significant scientific interests. Among the various applications leveraging microcombs, soliton microcombs are often preferred due to their inherent mode-locking capability. However, this choice introduces additional system complexity because an initialization process is required. Meanwhile, despite the theoretical understanding of the dynamics of other comb states, their practical potential, particularly in applications like sensing where simplicity is valued, remains largely untapped. Here, we demonstrate controllable generation of sub-combs that bypasses the need for accessing bistable regime. And in a graphene-sensitized microresonator, the sub-comb heterodynes produce stable, accurate microwave signals for high-precision gas detection. By exploring the formation dynamics of sub-combs, we achieved 2 MHz harmonic comb-to-comb beat notes with a signal-to-noise ratio (SNR) greater than 50 dB and phase noise as low as - 82 dBc/Hz at 1 MHz offset. The graphene sensitization on the intracavity probes results in exceptional frequency responsiveness to the adsorption of gas molecules on the graphene of microcavity surface, enabling detect limits down to the parts per billion (ppb) level. This synergy between graphene and sub-comb formation dynamics in a microcavity structure showcases the feasibility of utilizing microcombs in an incoherent state prior to soliton locking. It may mark a significant step toward the development of easy-to-operate, systemically simple, compact, and high-performance photonic sensors.
RESUMEN
Fiber-optic distributed acoustic sensing (DAS) has proven to be a revolutionary technology for the detection of seismic and acoustic waves with ultralarge scale and ultrahigh sensitivity, and is widely used in oil/gas industry and intrusion monitoring. Nowadays, the single-frequency laser source in DAS becomes one of the bottlenecks limiting its advance. Here, we report a dual-comb-based coherently parallel DAS concept, enabling linear superposition of sensing signals scaling with the comb-line number to result in unprecedented sensitivity enhancement, straightforward fading suppression, and high-power Brillouin-free transmission that can extend the detection distance considerably. Leveraging 10-line comb pairs, a world-class detection limit of 560 fε/âHz@1 kHz with 5 m spatial resolution is achieved. Such a combination of dual-comb metrology and DAS technology may open an era of extremely sensitive DAS at the fε/âHz level, leading to the creation of next-generation distributed geophones and sonars.
RESUMEN
In various industrial domains, machinery plays a pivotal role, with bearing failure standing out as the most prevalent cause of malfunction, contributing to approximately 41% to 44% of all operational breakdowns. To address this issue, this research employs a lightweight neural network, boasting a mere 8.69 K parameters, tailored for implementation on an FPGA (field-programmable gate array). By integrating an incremental network quantization approach and fixed-point operation techniques, substantial memory savings amounting to 63.49% are realized compared to conventional 32-bit floating-point operations. Moreover, when executed on an FPGA, this work facilitates real-time bearing condition detection at an impressive rate of 48,000 samples per second while operating on a minimal power budget of just 342 mW. Remarkably, this system achieves an accuracy level of 95.12%, showcasing its effectiveness in predictive maintenance and the prevention of costly machinery failures.
RESUMEN
This paper introduces a one-dimensional convolutional neural network (CNN) hardware accelerator. It is crafted to conduct real-time assessments of bearing conditions using economical hardware components, implemented on a field-programmable gate array evaluation platform, negating the necessity to transfer data to a cloud-based server. The adoption of the down-sampling technique augments the visible time span of the signal in an image, thereby enhancing the accuracy of the bearing condition diagnosis. Furthermore, the proposed method of quaternary quantization enhances precision and shrinks the memory demand for the neural network model by an impressive 89%. Provided that the current signal data sampling rate stands at 64 K samples/s, the proposed design can accomplish real-time fault diagnosis at a clock frequency of 100 MHz. Impressively, the response duration of the proposed CNN hardware system is a mere 0.28 s, with the fault diagnosis precision reaching a remarkable 96.37%.
Asunto(s)
Computadores , Redes Neurales de la ComputaciónRESUMEN
Solitons in microresonators have spurred intriguing nonlinear optical physics and photonic applications. Here, by combining Kerr and Brillouin nonlinearities in an over-modal microcavity, we demonstrate spatial multiplexing of soliton microcombs under a single external laser pumping operation. This demonstration offers an ideal scheme to realize highly coherent dual-comb sources in a compact, low-cost and energy-efficient manner, with uniquely low beating noise. Moreover, by selecting the dual-comb modes, the repetition rate difference of a dual-comb pair could be flexibly switched, ranging from 8.5 to 212 MHz. Beyond dual-comb, the high-density mode geometry allows the cascaded Brillouin lasers, driving the co-generation of up to 5 space-multiplexing frequency combs in distinct mode families. This Letter offers a novel physics paradigm for comb interferometry and provides a widely appropriate tool for versatile applications such as comb metrology, spectroscopy, and ranging.
RESUMEN
Jujuboside B (JB) is one of the main biologically active ingredients extracted from Zizyphi Spinosi Semen (ZSS), a widely used traditional Chinese medicine for treating insomnia and anxiety. Breast cancer is the most common cancer and the second leading cause of cancer-related death in women worldwide. The purpose of this study was to examine whether JB could prevent breast cancer and its underlying mechanism. First, we reported that JB induced apoptosis and autophagy in MDA-MB-231 and MCF-7 human breast cancer cell lines. Further mechanistic studies have revealed that JB-induced apoptosis was mediated by NOXA in both two cell lines. Moreover, the AMPK signaling pathway plays an important role in JB-induced autophagy in MCF-7. To confirm the anti-breast cancer effect of JB, the interaction of JB-induced apoptosis and autophagy was investigated by both pharmacological and genetic approaches. Results indicated that autophagy played a pro-survival role in attenuating apoptosis. Further in vivo study showed that JB significantly suppressed the growth of MDA-MB-231 and MCF-7 xenografts. In conclusion, our findings indicate that JB exerts its anti-breast cancer effect in association with the induction of apoptosis and autophagy.
RESUMEN
The neddylation pathway is overactivated in esophageal cancer. Our previous studies indicated that inactivation of neddylation by the NAE inhibitor induced apoptosis and autophagy in cancer cells. Camptothecin (CPT), a well-known anticancer agent, could induce apoptosis and autophagy in cancer cells. However, whether CPT could affect the neddylation pathway and the molecular mechanisms of CPT-induced autophagy in esophageal cancer remains elusive. We found that CPT induced apoptosis and autophagy in esophageal cancer. Mechanistically, CPT inhibited the activity of neddylation and induced the accumulation of p-IkBa to block NF-κB pathway. Furthermore, CPT induced the generation of ROS to modulate the AMPK/mTOR/ULK1 axis to finally promote protective autophagy. In our study, we elucidate a novel mechanism of the NF-κB/AMPK/mTOR/ULK1 pathway in CPT-induced protective autophagy in esophageal cancer cells, which provides a sound rationale for combinational anti-ESCC therapy with CPT and inhibition AMPK/ULK1 pathway.
RESUMEN
Rho family GTPase RhoB is the critical signaling component controlling the inflammatory response elicited by pro-inflammatory cytokines. However, the underlying mechanisms of RhoB degradation in inflammatory response remain unclear. In this study, for the first time, we identified that TNFAIP1, an adaptor protein of Cullin3 E3 ubiquitin ligases, coordinated with Cullin3 to mediate RhoB degradation through ubiquitin proteasome system. In addition, we demonstrated that downregulation of TNFAIP1 induced the expression of pro-inflammatory cytokines IL-6 and IL-8 in TNFα-stimulated hepatocellular carcinoma cells through the activation of p38/JNK MAPK pathway via blocking RhoB degradation. Our findings revealed a novel mechanism of RhoB degradation and provided a potential strategy for anti-inflammatory intervention of tumors by targeting TNFAIP1-RhoB axis.
RESUMEN
Protein Preferentially Expressed Antigen in Melanoma (Prame), a tumor-associated antigen, has been found to frequently overexpress in various cancers, which indicates advanced cancer stages and poor clinical prognosis. Moreover, previous reports noted that Prame functions as a substrate recognizing receptor protein of Cullin RING E3 ligases (CRLs) to mediate potential substrates degradation through Ubiquitin Proteasome System (UPS). However, none of the Prame specific substrate has been identified so far. In this study, proteomic analysis of RBX1-interacting proteins revealed p14/ARF, a well-known tumor suppressor, as a novel ubiquitin target of RBX1. Subsequently, immunoprecipitation and in vivo ubiquitination assay determined Cullin2-RBX1-Transcription Elongation Factor B Subunit 2 (EloB) assembled CRL2 E3 ligase complex to regulate the ubiquitination and subsequent degradation of p14/ARF. Finally, through siRNA screening, Prame was identified as the specific receptor protein responsible for recognizing p14/ARF to be degraded. Additionally, via bioinformatics analysis of TCGA database and clinical samples, Prame was determined to overexpress in tumor tissues vs. paired adjacent tissues and associated with poor prognosis of cancer patients. As such, downregulation of Prame expression significantly restrained cancer cell growth by inducing G2/M phase cell cycle arrest, which could be rescued by simultaneously knocking down of p14/ARF. Altogether, targeting overexpressed Prame in cancer cells inactivated RBX1-Cullin2-EloB-Prame E3 ligase (CRL2Prame) and halted p14/ARF degradation to restrain tumor growth by inducing G2/M phase cell cycle arrest.
Asunto(s)
Neoplasias/genética , Proteómica/métodos , Proteína p14ARF Supresora de Tumor/genética , Animales , Antígenos de Neoplasias/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Transfección , Regulación hacia ArribaRESUMEN
BACKGROUND: Protein neddylation plays a tumor-promoting role in esophageal cancer. Our previous study demonstrated that neddylation inhibition induced the accumulation of ATF4 to promote apoptosis in esophageal cancer cells. However, it is completely unknown whether neddylation inhibition could induce autophagy in esophageal cancer cells and affect the expression of other members of ATF/CREB subfamily, such as ATF3. METHODS: The expression of relevant proteins of NF-κB/Catalase/ATF3 pathway after neddylation inhibition was determined by immunoblotting analysis and downregulated by siRNA silencing for mechanistic studies. ROS generation upon MLN4924 treatment was determined by H2-DCFDA staining. The proliferation inhibition induced by MLN4924 was evaluated by ATPLite assay and apoptosis was evaluated by Annexin V /PI double staining. RESULTS: For the first time, we reported that MLN4924, a specific inhibitor of Nedd8-activating enzyme, promoted the expression of ATF3 to induce autophagy in esophageal cancer. Mechanistically, MLN4924 inhibited the activity of CRLs and induced the accumulation of its substrate IκBα to block NF-κB activation and Catalase expression. As a result, MLN4924 activated ATF3-induced protective autophagy, thereby inhibiting MLN4924-induced apoptosis, which could be alleviated by ATF3 silencing. CONCLUSIONS: In our study, we elucidates a novel mechanism of NF-κB/Catalase/ATF3 pathway in MLN4924-induced protective autophagy in esophageal cancer cells, which provides a sound rationale and molecular basis for combinational anti-ESCC therapy with knockdown ATF3 and neddylation inhibitor (e.g. MLN4924). Video abstract.
Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Ciclopentanos/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias Esofágicas/tratamiento farmacológico , FN-kappa B/metabolismo , Pirimidinas/farmacología , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores , Apoptosis , Autofagia , Catalasa/metabolismo , Línea Celular Tumoral , Humanos , Transducción de SeñalRESUMEN
Protein neddylation, a process of conjugating neural precursor cell expressed, developmentally downregulated 8 (NEDD8) to substrates, plays a tumor-promoting role in lung carcinogenesis. Our previous study showed MLN4924, an inhibitor of NEDD8 activating enzyme (E1), significantly inhibits the growth of multiple cancer cells. However, resistance can develop to MLN4924 by mutation. Therefore, it is important to further understand how NEDD8 acts in lung cancer. In the present study, we demonstrated NEDD8 is overactivated in lung cancers and confers a worse patient overall survival. Furthermore, we report that in lung adenocarcinoma cells, NEDD8 depletion significantly suppressed lung cancer cell growth and progression both in vitro and in vivo. Mechanistic studies revealed that NEDD8 depletion induced the accumulation of a panel of tumor-suppressive cullin-RING ubiquitin ligase substrates (e.g., p21, p27, and Wee1) via blocking their degradation, triggering cell cycle arrest at G2 phase, thus inducing apoptosis or senescence in a cell-line-dependent manner. The present study demonstrates the role of NEDD8 in regulating the malignant phenotypes of lung cancer cells and further validates NEDD8 as a potential therapeutic target in lung cancer.
Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Proteína NEDD8/metabolismo , Adenocarcinoma del Pulmón/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclopentanos/farmacología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Ubiquitina/metabolismoRESUMEN
Targeting modifications and smart responsiveness of nanomedicines can enable anticancer drugs to be selectively delivered to and controllably released in tumour cells or tissues, which can reduce the treatment's toxicity and side effects. Good biocompatibility is crucial for the clinical application of any nanomedicine. In this study, a double-targeting molecule, an RGD peptide- and 4-(2-aminoethyl) morpholine-modified, doxorubicin (DOX)-loaded bovine serum albumin (BSA) nanomedicine, that can be controllably released by the high levels of autophagic lysosomes in tumour cells was developed. The size of the spherical BSA nanoparticles is approximately 60 nm. In vitro experiments indicated that the RGD peptide- and 4-(2-aminoethyl) morpholine-modified, DOX-loaded BSA nanomedicine has a better therapeutic effect than free DOX. In vivo experiments suggested that the BSA nanomedicine can successfully suppress the progression of PC9 xenograft tumours. This phenomenon may be attributable to the endocytosis of a relatively large amount of nanomedicine and the effective release of the loaded chemotherapeutic agent, as induced by high levels of autolysosomes. Collectively, the results of this study provide a smart approach for increasing therapeutic efficacy using a double-targeting molecule-modified BSA nanomedicine.
Asunto(s)
Antibióticos Antineoplásicos/farmacología , Preparaciones de Acción Retardada , Doxorrubicina/farmacología , Portadores de Fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Lisosomas/efectos de los fármacos , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/farmacocinética , Composición de Medicamentos/métodos , Liberación de Fármacos , Femenino , Humanos , Neoplasias Pulmonares/patología , Lisosomas/metabolismo , Ratones , Ratones Desnudos , Morfolinas/química , Nanomedicina/métodos , Nanopartículas/administración & dosificación , Nanopartículas/química , Nanopartículas/ultraestructura , Oligopéptidos/química , Albúmina Sérica Bovina/química , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: The neddylation pathway is overactivated in human cancers. Inhibition of neddylation pathway has emerged as an attractive anticancer strategy. The mechanisms underlying neddylation overactivation in cancer remain elusive. MLN4924/Pevonedistat, a first-in-class NEDD8-activating enzyme (NAE, E1) inhibitor, exerts significant anti-tumor effects, but its mutagenic resistance remains unresolved. METHODS: The expression of NEDD8-conjugating enzyme UBC12/UBE2M (E2) and NEDD8 were estimated by bioinformatics analysis and western blot in human lung cancer cell lines. The malignant phenotypes of lung cancer cells were evaluated both in vitro and in vivo upon UBC12 knockdown. Cell-cycle arrest was evaluated by quantitative proteomic analysis and propidium iodide stain and fluorescence - activated cell sorting (FACS). The growth of MLN4924 - resistant H1299 cells was also evaluated upon UBC12 knockdown. FINDINGS: The mRNA level of UBC12 in lung cancer tissues was much higher than that in normal lung tissues, increased with disease deterioration, and positively correlated with NEDD8 expression. Moreover, the overexpression of UBC12 significantly enhanced protein neddylation modification whereas the downregulation of UBC12 reduced neddylation modification of target proteins. Functionally, neddylation inactivation by UBC12 knockdown suppressed the malignant phenotypes of lung cancer cells both in vitro and in vivo. The quantitative proteomic analysis and cell cycle profiling showed that UBC12 knockdown disturbed cell cycle progression by triggering G2 phase cell-cycle arrest. Further mechanistical studies revealed that UBC12 knockdown inhibited Cullin neddylation, led to the inactivation of CRL E3 ligases and induced the accumulation of tumor-suppressive CRL substrates (p21, p27 and Wee1) to induce cell cycle arrest and suppress the malignant phenotypes of lung cancer cells. Finally, UBC12 knockdown effectively inhibited the growth of MLN4924-resistant lung cancer cells. INTERPRETATION: These findings highlight a crucial role of UBC12 in fine-tuned regulation of neddylation activation status and validate UBC12 as an attractive alternative anticancer target against neddylation pathway. FUND: Chinese Minister of Science and Technology grant (2016YFA0501800), National Natural Science Foundation of China (Grant Nos. 81401893, 81625018, 81820108022, 81772470, 81572340 and 81602072), Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-10-E00056), Program of Shanghai Academic/Technology Research Leader (18XD1403800), National Thirteenth Five-Year Science and Technology Major Special Project for New Drug and Development (2017ZX09304001). The funders had no role in study design, data collection, data analysis, interpretation, writing of the report.
Asunto(s)
Neoplasias Pulmonares/genética , Proteína NEDD8/genética , Proteómica , Enzimas Ubiquitina-Conjugadoras/genética , Células A549 , Animales , Apoptosis/genética , Proliferación Celular/genética , China/epidemiología , Ciclopentanos/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Masculino , Ratones , Terapia Molecular Dirigida , Proteína NEDD8/antagonistas & inhibidores , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Ubiquitinas/genéticaRESUMEN
Metastasis is the leading cause of tumor-related death from lung cancer. However, limited success has been achieved in the treatment of lung cancer metastasis due to the lack of understanding of the mechanisms that underlie the metastatic process. In this study, Lewis lung carcinoma (LLC) cells which expressed green fluorescent protein in the nucleus and red fluorescent protein in the cytoplasm were used to record metastatic process in real-time via a whole-mouse imaging system. Using this system, we show the neddylation inhibitor MLN4924 inhibits multiple steps of the metastatic process, including intravascular survival, extravasation, and formation of metastatic colonies, thus finally suppressing tumor metastasis. Mechanistically, MLN4924 efficiently inhibits the expression of MMP2, MMP9, and vimentin and disrupts the actin cytoskeleton at an early stage to impair invasive potential and subsequently causes a DNA damage response, cell cycle arrest, and apoptosis upon long exposure to MLN4924. Furthermore, MMP2 and MMP9 are overexpressed in patient lung adenocarcinoma, which conferred a worse overall survival. Together, targeting the neddylation pathway via MLN4924 suppresses multiple steps of the metastatic process, highlighting the potential therapeutic value of MLN4924 for the treatment of metastatic lung cancer.
Asunto(s)
Neoplasias Pulmonares/metabolismo , Proteína NEDD8/metabolismo , Metástasis de la Neoplasia/prevención & control , Animales , Apoptosis/fisiología , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Ciclopentanos/farmacología , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/fisiopatología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteína NEDD8/fisiología , Invasividad Neoplásica/fisiopatología , Metástasis de la Neoplasia/fisiopatología , Procesamiento Proteico-Postraduccional/fisiología , Pirimidinas/farmacología , Transducción de Señal , Enzimas Activadoras de Ubiquitina/metabolismo , Vimentina/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Fructose is an important alternative carbon source for several tumors, and GLUT5 is the major fructose transporter which mediates most of fructose uptake in cells. So far, it is unclear whether GLUT5-mediated fructose utilization is important for clear cell renal cell carcinoma (ccRCC). Here, we demonstrated that GLUT5 was highly expressed in a panel of ccRCC cell lines. High GLUT5 expression exacerbated the neoplastic phenotypes of ccRCC cells, including cell proliferation and colony formation. On the other hand, deletion of the GLUT5-encoding gene SLC2A5 dramatically attenuated cellular malignancy via activating the apoptotic pathway. Moreover, administration of 2,5-anhydro-D-mannitol (2,5-AM), a competitive inhibitor of fructose uptake, could markedly suppress ccRCC cell growth. Together, we provide a new mechanistic insight for GLUT5-mediated fructose utilization in ccRCC cells and highlight the therapeutic potential for targeting this metabolic pathway against ccRCC.
Asunto(s)
Carcinoma de Células Renales/metabolismo , Fructosa/metabolismo , Transportador de Glucosa de Tipo 5/metabolismo , Neoplasias Renales/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Transporte Biológico , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Femenino , Fructosa/antagonistas & inhibidores , Células HEK293 , Xenoinjertos , Humanos , Neoplasias Renales/patología , Manitol/análogos & derivados , Manitol/farmacología , Ratones , Ratones Endogámicos BALB C , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
OBJECTIVES: The present study aimed to reveal expression status of the neddylation enzymes in HNSCC and to elucidate the anticancer efficacy and the underlying mechanisms of inhibiting neddylation pathway. MATERIALS AND METHODS: The expression levels of neddylation enzymes were estimated by Western blotting in human HNSCC specimens and bioinformatics analysis of the cancer genome atlas (TCGA) database. Cell apoptosis was evaluated by Annexin V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) stain and fluorescence-activated cell sorting (FACS). Small interfering RNA (siRNA) and the CRISPR-Cas9 system were used to elucidate the underlying molecular mechanism of MLN4924-induced HNSCC apoptosis. RESULTS: Expression levels of NAE1 and UBC12 were prominently higher in HNSCC tissues than that in normal tissues. Inactivation of the neddylation pathway significantly inhibited malignant phenotypes of HNSCC cells. Mechanistic studies revealed that MLN4924 induced the accumulation of CRL ligase substrate c-Myc that transcriptionally activated pro-apoptotic protein Noxa, which triggered apoptosis in HNSCC. CONCLUSIONS: These findings determined the over-expression levels of neddylation enzymes in HNSCC and revealed novel mechanisms underlying neddylation inhibition induced growth suppression in HNSCC cells, which provided preclinical evidence for further clinical evaluation of neddylation inhibitors (eg, MLN4924) for the treatment of HNSCC.