Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Adv Mater ; : e2400976, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740388

RESUMEN

ZnSO4-based electrolytes for aqueous zinc ion batteries fail to meet practical application metrics due to hydrogen evolution reaction (HER) and dendrite growth. In this work, a highly polarized eutectic additive, glycerophosphorylcholine (GPC) is rationally designed, to regulate the electric double layer (EDL) structure for stable Zn anodes with a high depth of discharge (DOD). On one hand, GPC molecules with abundant hydroxyl groups can precisely regulate the hydrogen bond network in EDL to suppress HER. On the other hand, the enrichment of GPC at the interface is positively responsible for the negative charge density on the Zn surface, which leads to the formation of a robust ZnxPyOz-rich solid-electrolyte interphase and terminates dendrite growth in the charge-rich sites. This EDL-oriented eutectic additive engineering enables highly reversible and selectively (002)-textured Zn anodes to operate for over 1450 h at a high DOD of 45.3%. Meanwhile, a high-capacity (185.7 mAh g-1) aqueous Zn||VS2 full cell shows remarkable cycling stability over 220 cycles with an excellent capacity retention of 90.4% even at a low current density of 0.1 A g-1 (0.5 C). This work sheds light on electrolyte design and interface engineering for high-performance aqueous batteries.

2.
BMJ Open ; 14(5): e080858, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38719315

RESUMEN

OBJECTIVES: To evaluate whether nephrotic syndrome (NS) and further corticosteroid (CS) use increase the risk of osteoporosis in Asian population during the period January 2000-December 2010. DESIGN: Nationwide population-based retrospective cohort study. SETTING: All healthcare facilities in Taiwan. PARTICIPANTS: A total of 28 772 individuals were enrolled. INTERVENTIONS: 26 614 individuals with newly diagnosed NS between 2000 and 2010 were identified and included in out study. 26 614 individuals with no NS diagnosis prior to the index date were age matched as controls. Diagnosis of osteoporosis prior to the diagnosis of NS or the same index date was identified, age, sex and NS-associated comorbidities were adjusted. PRIMARY OUTCOME MEASURE: To identify risk differences in developing osteoporosis among patients with a medical history of NS. RESULTS: After adjusting for covariates, osteoporosis risk was found to be 3.279 times greater in the NS cohort than in the non-NS cohort, when measured over 11 years after NS diagnosis. Stratification revealed that age older than 18 years, congestive heart failure, hyperlipidaemia, chronic kidney disease, liver cirrhosis and NS-related disease including diabetes mellitus, hepatitis B infection, hepatitis C infection, lymphoma and hypothyroidism, increased the risk of osteoporosis in the NS cohort, compared with the non-NS cohort. Additionally, osteoporosis risk was significantly higher in NS patients with CS use (adjusted HR (aHR)=3.397). The risk of osteoporosis in NS patients was positively associated with risk of hip and vertebral fracture (aHR=2.130 and 2.268, respectively). A significant association exists between NS and subsequent risk for osteoporosis. CONCLUSION: NS patients, particularly those treated with CS, should be evaluated for subsequent risk of osteoporosis.


Asunto(s)
Síndrome Nefrótico , Osteoporosis , Humanos , Taiwán/epidemiología , Osteoporosis/epidemiología , Osteoporosis/complicaciones , Femenino , Estudios Retrospectivos , Masculino , Persona de Mediana Edad , Síndrome Nefrótico/epidemiología , Síndrome Nefrótico/complicaciones , Adulto , Anciano , Factores de Riesgo , Comorbilidad , Adulto Joven , Adolescente , Corticoesteroides/efectos adversos
3.
Nat Commun ; 15(1): 3850, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719864

RESUMEN

The K+ uptake system KtrAB is essential for bacterial survival in low K+ environments. The activity of KtrAB is regulated by nucleotides and Na+. Previous studies proposed a putative gating mechanism of KtrB regulated by KtrA upon binding to ATP or ADP. However, how Na+ activates KtrAB and the Na+ binding site remain unknown. Here we present the cryo-EM structures of ATP- and ADP-bound KtrAB from Bacillus subtilis (BsKtrAB) both solved at 2.8 Å. A cryo-EM density at the intra-dimer interface of ATP-KtrA was identified as Na+, as supported by X-ray crystallography and ICP-MS. Thermostability assays and functional studies demonstrated that Na+ binding stabilizes the ATP-bound BsKtrAB complex and enhances its K+ flux activity. Comparing ATP- and ADP-BsKtrAB structures suggests that BsKtrB Arg417 and Phe91 serve as a channel gate. The synergism of ATP and Na+ in activating BsKtrAB is likely applicable to Na+-activated K+ channels in central nervous system.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Proteínas de Transporte de Catión , Potasio , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/química , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Potasio/metabolismo , Unión Proteica , Sodio/metabolismo
4.
iScience ; 27(5): 109738, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38706844

RESUMEN

Tumor tissues often contain high extracellular adenosine, promoting an immunosuppressed environment linked to mesenchymal transition and immune evasion. Here, we show that loss of the epithelial transcription factor, GRHL2, triggers NT5E/CD73 ecto-enzyme expression, augmenting the conversion of AMP to adenosine. GRHL2 binds an intronic NT5E sequence and is negatively correlated with NT5E/CD73 in breast cancer cell lines and patients. Remarkably, the increased adenosine levels triggered by GRHL2 depletion in MCF-7 breast cancer cells do not suppress but mildly increase CD8 T cell recruitment, a response mimicked by a stable adenosine analog but prevented by CD73 inhibition. Indeed, NT5E expression shows a positive rather than negative association with CD8 T cell infiltration in breast cancer patients. These findings reveal a GRHL2-regulated immune modulation mechanism in breast cancers and show that extracellular adenosine, besides its established role as a suppressor of T cell-mediated cytotoxicity, is associated with enhanced T cell recruitment.

5.
J Am Chem Soc ; 146(15): 10257-10262, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38578111

RESUMEN

Sorption-based atmospheric water harvesting (AWH) is a promising solution for addressing water scarcity. Developing cost-effective and stable water adsorbents with high water uptake capacity and a low-temperature regeneration requirement is a crucially important procedure. In this Communication, we present a novel and stable aluminophosphate (AlPO) molecular sieve (MS) named DNL-11 with 16-ring channels synthesized by using an affordable and commercialized organic structure directing agent (OSDA), whose crystallographic structure is elucidated by three-dimensional electron diffraction (3D ED). DNL-11 exhibits a significant water uptake capacity (189 mg/g) at a very low vapor pressure (5% relative humidity at 30 °C). In addition, most of the adsorbed water can be effortlessly removed by purging N2 at 25 °C under ambient pressure conditions. This may expand the possibility of AWH under extreme drought conditions.

6.
Angew Chem Int Ed Engl ; : e202403607, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659136

RESUMEN

Alkaline zinc-ferricyanide flow batteries are efficiency and economical as energy storage solutions. However, they suffer from low energy density and short calendar life. The strongly alkaline conditions (3 mol L-1 OH-) reduce the solubility of ferri/ferro-cyanide (normally only 0.4 mol L-1 at 25 °C) and induce the formation of zinc dendrites at the anode. Here, we report a new zinc-ferricyanide flow battery based on a mild alkalescent (pH 12) electrolyte. Using a chelating agent to rearrange ferri/ferro-cyanide ion-solvent interactions and improve salt dissociation, we increased the solubility of ferri/ferro-cyanide to 1.7 mol L-1 and prevented zinc dendrites. Our battery has an energy density of ~74 Wh L-1 catholyte at 60 °C and remains stable for 1800 cycles (1800 hours) at 0 °C and for >1400 cycles (2300 hours) at 25 °C. An alkalescent zinc-ferricyanide cell stack built using this alkalescent electrolyte stably delivers 608 W of power for ~40 days.

7.
Sci Adv ; 10(12): eadl1126, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38507485

RESUMEN

Excitation-contraction coupling (ECC) is a fundamental mechanism in control of skeletal muscle contraction and occurs at triad junctions, where dihydropyridine receptors (DHPRs) on transverse tubules sense excitation signals and then cause calcium release from the sarcoplasmic reticulum via coupling to type 1 ryanodine receptors (RyR1s), inducing the subsequent contraction of muscle filaments. However, the molecular mechanism remains unclear due to the lack of structural details. Here, we explored the architecture of triad junction by cryo-electron tomography, solved the in situ structure of RyR1 in complex with FKBP12 and calmodulin with the resolution of 16.7 Angstrom, and found the intact RyR1-DHPR supercomplex. RyR1s arrange into two rows on the terminal cisternae membrane by forming right-hand corner-to-corner contacts, and tetrads of DHPRs bind to RyR1s in an alternating manner, forming another two rows on the transverse tubule membrane. This unique arrangement is important for synergistic calcium release and provides direct evidence of physical coupling in ECC.


Asunto(s)
Calcio , Canal Liberador de Calcio Receptor de Rianodina , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Músculo Esquelético/metabolismo , Canales de Calcio Tipo L/análisis , Canales de Calcio Tipo L/metabolismo , Retículo Sarcoplasmático/metabolismo , Contracción Muscular/fisiología
8.
Phys Chem Chem Phys ; 25(44): 30308-30318, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37934509

RESUMEN

Acetylcholinesterase (AChE) is an important hydrolase in cholinergic synapses and a candidate target in the treatment of Alzheimer's disease. The lithium treatment widely used in neurological disorders can alter the AChE activity, yet the underlying mechanism of how the ion species regulate the enzymatic activity remains unclear. In this work, we performed combined quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulations and well-tempered metadynamics to understand the modulation of human AChE (hAChE) activity using three alkali metal ions (Li+, Na+, and K+) in different concentrations. Our simulations show that the binding affinity and catalytic activity are affected by different ion species through allosteric ion coordination geometries on the hAChE complex and distant electrostatic screening effect. A Li+ cluster involving D330, E393, and D397 residues and three Li+ ions was found to be highly conserved and can be critical to the enzyme activity. Binding energy calculations indicate that the electrostatic screening from allosterically bound cations can affect the key residues at the catalytic site and active-site gorge, including E199. Furthermore, an increase in ion concentration can lead to lower reactivity, especially for Li+ ions, which exhibit more cation-hAChE contacts than Na+ and K+. The selective ion binding and their preferred modulation on hAChE are highly related to ion species. This work provides a molecular perspective on selective modulation by different ion species of the enzyme catalytic processes.


Asunto(s)
Acetilcolinesterasa , Metales Alcalinos , Humanos , Acetilcolinesterasa/química , Metales Alcalinos/química , Litio/química , Sodio/química , Cationes
9.
Materials (Basel) ; 16(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37512335

RESUMEN

Due to its high carrier mobility and electron transmission, the phenyl-C61-butyric acid methyl ester (PC61BM) is usually used as an electron transport layer (ETL) in perovskite solar cell (PSC) configurations. However, PC61BM films suffer from poor coverage on perovskite active layers because of their low solubility and weak adhesive ability. In this work, to overcome the above-mentioned shortcomings, 30 nm thick PC61BM ETLs with different concentrations were modeled. Using a 30 nm thick PC61BM ETL with a concentration of 50 mg/mL, the obtained performance values of the PSCs were as follows: an open-circuit voltage (Voc) of 0.87 V, a short-circuit current density (Jsc) of 20.44 mA/cm2, a fill factor (FF) of 70.52%, and a power conversion efficiency (PCE) of 12.54%. However, undesired fine cracks present on the PC61BM surface degraded the performance of the resulting PSCs. To further improve performance, multiple different thicknesses of ZnO interface layers were deposited on the PC61BM ETLs to release the fine cracks using a thermal evaporator. In addition to the pavement of fine cracks, the ZnO interface layer could also function as a hole-blocking layer due to its larger highest occupied molecular orbital (HOMO) energy level. Consequently, the PCE was improved to 14.62% by inserting a 20 nm thick ZnO interface layer in the PSCs.

10.
J Chem Theory Comput ; 19(13): 4286-4298, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37306495

RESUMEN

To expand the capabilities of reactive force field (ReaxFF) in simulations of biological processes involving glucose, in this work, using Metropolis Monte Carlo algorithm, new ReaxFF parameters for glucose have been developed to better describe the properties of glucose in water during molecular dynamics (MD) simulations. With the newly trained ReaxFF, the mutarotation of glucose in water can be better described, as suggested by our metadynamics simulations. In addition, the newly trained ReaxFF can better describe the distributions of the three stable conformers along the key dihedral angle of α-anomer and ß-anomer. With better descriptions of hydration around glucose, the Raman and Raman optical activity spectra can be more accurately calculated. In addition, the infrared spectra obtained from simulations with the new glucose ReaxFF are more accurate than those obtained with the original ReaxFF. We note that although our trained ReaxFF performs better than the original ReaxFF, it is not generally applicable to all carbohydrates, which require further parametrization. We also find that the absence of explicit water molecules in the training sets may lead to inaccurate descriptions of water-water interactions around the glucose, implicating that it is necessary to optimize the water ReaxFF parameters together with the target molecule. The improved ReaxFF makes it possible to explore interesting biological processes involving glucose more accurately and efficiently.

11.
Cell Mol Gastroenterol Hepatol ; 16(1): 107-131, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37085135

RESUMEN

BACKGROUND & AIMS: Improving clinical management of early stage colorectal cancers (T1CRCs) requires a better understanding of their underlying biology. Accumulating evidence shows that cancer-associated fibroblasts (CAFs) are important determinants of tumor progression in advanced colorectal cancer (CRC), but their role in the initial stages of CRC tumorigenesis is unknown. Therefore, we investigated the contribution of T1CAFs to early CRC progression. METHODS: Primary T1CAFs and patient-matched normal fibroblasts (NFs) were isolated from endoscopic biopsy specimens of histologically confirmed T1CRCs and normal mucosa, respectively. The impact of T1CAFs and NFs on tumor behavior was studied using 3-dimensional co-culture systems with primary T1CRC organoids and extracellular matrix (ECM) remodeling assays. Whole-transcriptome sequencing and gene silencing were used to pinpoint mediators of T1CAF functions. RESULTS: In 3-dimensional multicellular cultures, matrix invasion of T1CRC organoids was induced by T1CAFs, but not by matched NFs. Enhanced T1CRC invasion was accompanied by T1CAF-induced ECM remodeling and up-regulation of CD44 in epithelial cells. RNA sequencing of 10 NF-T1CAF pairs revealed 404 differentially expressed genes, with significant enrichment for ECM-related pathways in T1CAFs. Cathepsin H, a cysteine-type protease that was specifically up-regulated in T1CAFs but not in fibroblasts from premalignant lesions or advanced CRCs, was identified as a key factor driving matrix remodeling by T1CAFs. Finally, we showed high abundance of cathepsin H-expressing T1CAFs at the invasive front of primary T1CRC sections. CONCLUSIONS: Already in the earliest stage of CRC, cancer cell invasion is promoted by CAFs via direct interactions with epithelial cancer cells and stage-specific, cathepsin H-dependent ECM remodeling. RNA sequencing data of the 10 NF-T1CAF pairs can be found under GEO accession number GSE200660.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Catepsina H/metabolismo , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Fibroblastos/metabolismo , Neoplasias Colorrectales/patología
12.
Arch Gynecol Obstet ; 308(1): 143-148, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36966428

RESUMEN

OBJECTIVE: Ectopic pregnancy is a life-threatening disease and is an important cause of pregnancy-related mortality. MTX is the primary conservative treatment medicine of ectopic pregnancy, and mifepristone is also a promising medicine. Through studying the ectopic cases at the third affiliated hospital of Sun Yat-Sen University, the study aims to analyze the indication and treatment outcome predictors of mifepristone. METHODS: The data of 269 ectopic pregnancy cases treated with mifepristone during the year 2011-2019 were retrospectively collected. Logistic-regression analysis was used to analyze the factors affiliated with the treatment outcome of mifepristone. Then ROC curve was used to analyze the indication and predictors. RESULTS: Through logistic-regression analysis, HCG is the only factor related to the treatment outcome of mifepristone. The AUC of ROC curve predicting treatment outcome with pre-treatment HCG is 0.715, and the cutoff value of ROC curve is 372.66 (sensitivity 0.752, specificity 0.619). The AUC of 0/4 ratio predicting the treatment outcome is 0.886, and the cutoff value is 0.3283 (sensitivity 0.967, specificity 0.683). The AUC of 0/7 ratio is 0.947, and the cutoff value is 0.3609 (sensitivity 1, specificity 0.828). CONCLUSIONS: Mifepristone can be used to treat ectopic pregnancy. HCG is the only factor related to the treatment outcome of mifepristone. Patients with HCG less than 372.66 U/L can be treated by mifepristone. If HCG descends more than 67.18% on the 4th day or 63.91% on the 7th day, it is more likely to have a successful treatment outcome. It is more precise to retest on the 7th day.


Asunto(s)
Mifepristona , Embarazo Ectópico , Embarazo , Femenino , Humanos , Mifepristona/uso terapéutico , Estudios Retrospectivos , Metotrexato , Embarazo Ectópico/tratamiento farmacológico , Resultado del Tratamiento , Gonadotropina Coriónica Humana de Subunidad beta
13.
Nat Commun ; 14(1): 1149, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36854779

RESUMEN

Membranes with fast and selective ion transport are essential for separations and electrochemical energy conversion and storage devices. Metal-coordinated polymers are promising for fabricating ion-conducting membranes with molecular channels, however, the structures and ion transport channels remain poorly understood. Here, we reported mechanistic insights into the structures of metal-ion coordinated polybenzimidazole membranes and the preferential K+ transport. Molecular dynamics simulations suggested that coordination between metal ions and polybenzimidazole expanded the free volume, forming subnanometre molecular channels. The combined physical confinement in nanosized channels and electrostatic interactions of membranes resulted in a high K+ transference number up to 0.9 even in concentrated salt and alkaline solutions. The zinc-coordinated polybenzimidazole membrane enabled fast transport of charge carriers as well as suppressed water migration in an alkaline zinc-iron flow battery, enabling the battery to operate stably for over 340 hours. This study provided an alternative strategy to regulate the ion transport properties of polymer membranes by tuning polymer chain architectures via metal ion coordination.

14.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36768838

RESUMEN

The transcription factor Grainyhead-like 2 (GRHL2) is a critical transcription factor for epithelial tissues that has been reported to promote cancer growth in some and suppress aspects of cancer progression in other studies. We investigated its role in different breast cancer subtypes. In breast cancer patients, GRHL2 expression was increased in all subtypes and inversely correlated with overall survival in basal-like breast cancer patients. In a large cell line panel, GRHL2 was expressed in luminal and basal A cells, but low or absent in basal B cells. The intersection of ChIP-Seq analysis in 3 luminal and 3 basal A cell lines identified conserved GRHL2 binding sites for both subtypes. A pathway analysis of ChIP-seq data revealed cell-cell junction regulation and epithelial migration as well as epithelial proliferation, as candidate GRHL2-regulated processes and further analysis of hub genes in these pathways showed similar regulatory networks in both subtypes. However, GRHL2 deletion in a luminal cell line caused cell cycle arrest while this was less prominent in a basal A cell line. Conversely, GRHL2 loss triggered enhanced migration in the basal A cells but failed to do so in the luminal cell line. ChIP-Seq and ChIP-qPCR demonstrated GRHL2 binding to CLDN4 and OVOL2 in both subtypes but not to other GRHL2 targets controlling cell-cell adhesion that were previously identified in other cell types, including CDH1 and ZEB1. Nevertheless, E-cadherin protein expression was decreased upon GRHL2 deletion especially in the luminal line and, in agreement with its selectively enhanced migration, only the basal A cell line showed concomitant induction of vimentin and N-cadherin. To address how the balance between growth reduction and aspects of EMT upon loss of GRHL2 affected in vivo behavior, we used a mouse basal A orthotopic transplantation model in which the GRHL2 gene was silenced. This resulted in reduced primary tumor growth and a reduction in number and size of lung colonies, indicating that growth suppression was the predominant consequence of GRHL2 loss. Altogether, these findings point to largely common but also distinct roles for GRHL2 in luminal and basal breast cancers with respect to growth and motility and indicate that, in agreement with its negative association with patient survival, growth suppression is the dominant response to GRHL2 loss.


Asunto(s)
Proteínas de Unión al ADN , Neoplasias , Animales , Ratones , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Procesamiento Proteico-Postraduccional , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
J Mol Neurosci ; 72(6): 1358-1373, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35538393

RESUMEN

G protein-coupled receptors (GPCRs) are currently appreciated to be routed to diverse cellular platforms to generate both G protein-dependent and -independent signals. The latter has been best studied with respect to ß-arrestin-associated receptor internalization and trafficking to signaling endosomes for extracellular signal-regulated kinase (ERK) activation. However, how GPCR structural and conformational variants regulate endosomal ERK signaling dynamics, which can be central in neural development, plasticity, and disease processes, is not well understood. Among class B GPCRs, the PACAP-selective PAC1 receptor is unique in the expression of variants that can contain intracellular loop 3 (ICL3) cassette inserts. The nervous system expresses preferentially the PAC1Null (no insert) and PAC1Hop (28-amino acid Hop insert) receptor variants. Our molecular modeling and signaling studies revealed that the PAC1Null and PAC1Hop receptor variants can associate with ß-arrestin differentially, resulting in enhanced receptor internalization and ERK activation for the PAC1Hop variant. The study amplifies our understandings of GPCR intracellular loop structure/function relationships with the first example of how the duration of endosomal ERK activation can be guided by ICL3. The results provide a framework for how changes in GPCR variant expression can impact developmental and homeostatic processes and may be contributory to maladaptive neuroplasticity underlying chronic pain and stress-related disorders.


Asunto(s)
Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Transducción de Señal , Endosomas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , beta-Arrestinas/metabolismo
16.
Langmuir ; 38(11): 3522-3529, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35263105

RESUMEN

Ceramide is a sphingolipid that constitutes only a small fraction of membrane biomolecules but plays a central role in regulating many biological processes. The ceramide level in cell membranes can drastically increase in response to external damage, which has been hypothesized to involve ceramide's biophysical role that increases the membrane packing density and lowers the membrane permeability. However, direct observation of the consequent influence on membrane chemistry resulting from these ceramide-induced physical properties has been absent. Using our unique field-induced droplet ionization mass spectrometry technique combined with molecular dynamics simulations, here we report that the addition of ceramide to POPC monolayer membranes at the air-water interface greatly reduces the chemical damage from potent chemicals, •OH radicals, and HCl vapor, by stiffening the membrane packing and lowering the permeability. These results shed new light on the underlying chemoprotective role of ceramide in lipid membranes, which might serve as a previously unknown protection mechanism in response to external stimuli that cause cell stress or death.


Asunto(s)
Ceramidas , Membrana Dobles de Lípidos , Membrana Celular/química , Ceramidas/química , Membrana Dobles de Lípidos/química , Membranas/metabolismo , Simulación de Dinámica Molecular
17.
Curr Opin Struct Biol ; 72: 27-32, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34399155

RESUMEN

The cellular environment is highly crowded with most proteins and RNA/DNA forming homomeric and heteromeric complexes. Essential questions regarding how these complexes switch between functional, rest, and abnormal states with regulators or modifications remain challenging and complicated. Here, we review the recent progress integrating cryoelectron microscopy and multiscale molecular modeling to understand the dynamics and function-related mechanism in protein-RNA/DNA complexes, protein-protein complexes/assemblies, and membrane protein complexes. One future direction of multiscale simulations will be to interpret the large complex multibody regulation in assembly-induced function enhancement in conjunction with advanced atomic resolution structural-biology techniques and specialized computing architectures.


Asunto(s)
ADN , Proteínas , Microscopía por Crioelectrón/métodos , Modelos Moleculares , ARN
18.
Phys Chem Chem Phys ; 23(29): 15784-15795, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34286758

RESUMEN

G protein-gated inwardly rectifying potassium (GIRK) channels play essential roles in electrical signaling in neurons and muscle cells. Nonequilibrium environments provide crucial driving forces behind many cellular events. Here, we apply the antiparallel alignment double bilayer model to study GIRK2 in response to the time-dependent membrane potential. Using molecular dynamics and umbrella sampling, we examined the time-dependent environmental impact on the ion conduction, energy basis, and primary motions of GIRK2 in different complex states with phosphatidylinositol-4,5-bisphosphate (PIP2) and G-protein ßγ subunits (Gßγ). The antiparallel alignment double bilayer model enables us to study the transport performance in inward and outward K+ and mixed K+ and Na+. We obtained the recoverable discharge process of GIRK2 complexed with both PIP2 and Gßγ, compared with occasional conduction under PIP2-only regulation. Calculations of potential of mean force suggest different regulation by the helix bundle crossing (HBC) gate and G-loop gate regarding different complex states and under a membrane potential. In a nonequilibrium environment, distinct functional rocking motions of GIRK2 were identified under strengthened correlations between the transmembrane helices and downstream cytoplasmic domains with binding of PIP2, cations, and Gßγ. The findings suggest the potential domain motions and dynamics associated with a nonequilibrium environment and highlight the application of the antiparallel alignment double bilayer model to investigate factors in an asymmetric environment.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Cationes/química , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/química , Potenciales de la Membrana , Simulación de Dinámica Molecular , Fosfatidilinositol 4,5-Difosfato/química , Potasio/química , Conformación Proteica , Sodio/química , Termodinámica
19.
Front Mol Biosci ; 8: 644644, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33842547

RESUMEN

The related neuropeptides PACAP and VIP, and their shared PAC1, VPAC1 and VPAC2 receptors, regulate a large array of physiological activities in the central and peripheral nervous systems. However, the lack of comparative and molecular mechanistic investigations hinder further understanding of their preferred binding selectivity and function. PACAP and VIP have comparable affinity at the VPAC1 and VPAC2 receptor, but PACAP is 400-1,000 fold more potent than VIP at the PAC1 receptor. A molecular understanding of the differing neuropeptide-receptor interactions and the details underlying the receptor transitions leading to receptor activation are much needed for the rational design of selective ligands. To these ends, we have combined structural information and advanced simulation techniques to study PACAP/VIP binding selectivity, full-length receptor conformation ensembles and transitions of the PACAP/VIP receptor variants and subtypes, and a few key interactions in the orthosteric-binding pocket. Our results reveal differential peptide-receptor interactions (at the atomistic detail) important for PAC1, VPAC1 and VPAC2 receptor ligand selectivity. Using microsecond-long molecular dynamics simulations and the Markov State Models, we have also identified diverse receptor conformational ensembles and microstate transition paths for each receptor, the potential mechanisms underlying receptor open and closed states, and the interactions and dynamics at the transmembrane orthosteric pocket for receptor activation. These analyses reveal important features in class B GPCR structure-dynamics-function relationships, which provide novel insights for structure-based drug discovery.

20.
Am J Nephrol ; 52(4): 292-303, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33887746

RESUMEN

INTRODUCTION: Patients with carbon monoxide poisoning (COP) commonly have long-term morbidities. However, it is not known whether patients with COP exhibit an increased risk of developing chronic kidney disease (CKD) and whether hyperbaric oxygen therapy (HBOT) alters this risk. METHODS: This study identified 8,618 patients who survived COP and 34,464 propensity score-matched non-COP patients from 2000 to 2013 in a nationwide administrative registry. The primary outcome was the development of CKD. The association between COP and the risk of developing CKD was estimated using a Cox proportional hazards regression model; the cumulated incidence of CKD among patients stratified by HBOT was evaluated using a Kaplan-Meier analysis. RESULTS: After adjusting for covariates, the risk of CKD was 6.15-fold higher in COP patients than in non-COP controls. Based on the subgroup analyses, regardless of demographic characteristics, environmental factors, and comorbidities, the COP cohort exhibited an increased risk of developing CKD compared with the controls. The cumulative incidence of CKD in COP patients did not differ between the HBOT and non-HBOT groups (p = 0.188). CONCLUSIONS: COP might be an independent risk factor for developing CKD. Thus, clinicians should enhance the postdischarge follow-up of kidney function among COP patients.


Asunto(s)
Intoxicación por Monóxido de Carbono/complicaciones , Intoxicación por Monóxido de Carbono/terapia , Oxigenoterapia Hiperbárica , Insuficiencia Renal Crónica/etiología , Adolescente , Adulto , Estudios de Cohortes , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Insuficiencia Renal Crónica/epidemiología , Estudios Retrospectivos , Medición de Riesgo , Taiwán , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA