Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 11851, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087396

RESUMEN

The ACT domain (aspartate kinase, chorismate mutase and TyrA), an allosteric effector binding domain, is commonly found in amino acid metabolic enzymes. In addition to ACT domain-containing enzymes, plants have a novel family of ACT domain repeat (ACR) proteins, which do not contain any recognizable catalytic domain. Arabidopsis has 12 ACR proteins, whose functions are largely unknown. To study the functions of Arabidopsis ACR11, we have characterized two independent T-DNA insertion mutants, acr11-2 and acr11-3. RNA gel-blot analysis revealed that the expression of wild-type ACR11 transcripts was not detectable in the acr11 mutants. Interestingly, a lesion-mimic phenotype occurs in some rosette leaves of the acr11 mutants. In addition, high levels of reactive oxygen species (ROS), salicylic acid (SA), and callose accumulate in the mutant leaves when grown under normal conditions. The expression of several SA marker genes and the key SA biosynthetic gene ISOCHORISMATE SYNTHASE1 is up-regulated in the acr11 mutants. Furthermore, the acr11 mutants are more resistant to the infection of bacterial pathogen Pseudomonas syringae pathovar tomato DC3000. These results suggest that ACR11 may be directly or indirectly involved in the regulation of ROS and SA accumulation, which in turn modulates SA-associated defense responses and disease resistance in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Enfermedades de las Plantas/genética , ARN Nucleotidiltransferasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Mutación , Oxidación-Reducción , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , Pseudomonas syringae/fisiología , ARN Nucleotidiltransferasas/genética
2.
Plant J ; 91(1): 145-157, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28346710

RESUMEN

Thiamin diphosphate (TPP, vitamin B1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Tiamina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Tiamina Pirofosfato/metabolismo
3.
Photosynth Res ; 127(2): 151-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26008795

RESUMEN

Chloroplasts and mitochondria play important roles in maintaining metabolic and energy homeostasis in the plant cell. The interactions between these two organelles, especially photosynthesis and respiration, have been intensively studied. Still, little is known about the regulation of mitochondrial gene expression by chloroplasts and vice versa. The gene expression machineries in chloroplasts and mitochondria rely heavily on the nuclear genome. Thus, the interactions between nucleus and these organelles, including anterograde and retrograde regulation, have been actively investigated in the last two decades. Norflurazon (NF) and lincomycin (Lin) are two commonly used inhibitors to study chloroplast-to-nucleus retrograde signaling in plants. We used NF and Lin to block the development and functions of chloroplasts and examined their effects on mitochondrial gene expression, RNA editing and splicing. The editing of most mitochondrial transcripts was not affected, but the editing extents of nad4-107, nad6-103, and ccmFc-1172 decreased slightly in NF- and Lin-treated seedlings. While the splicing of mitochondrial transcripts was not significantly affected, steady-state mRNA levels of several mitochondrial genes increased significantly in NF- and Lin-treated seedlings. Moreover, Lin seemed to have more profound effects than NF on the expression of mitochondrial genes, indicating that signals derived from these two inhibitors might be distinct. NF and Lin also significantly induced the expression of nuclear genes encoding subunits of mitochondrial electron transport chain complexes. Thus, dysfunctional chloroplasts may coordinately up-regulate the expression of nuclear and mitochondrial genes encoding subunits of respiratory complexes.


Asunto(s)
Arabidopsis/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes Mitocondriales , Plantones/genética , Regulación hacia Arriba/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/ultraestructura , Secuencia de Bases , Cloroplastos/efectos de los fármacos , Cloroplastos/ultraestructura , Intrones/genética , Lincomicina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Datos de Secuencia Molecular , Fotosíntesis/efectos de los fármacos , Piridazinas/farmacología , Edición de ARN/genética , Empalme del ARN/efectos de los fármacos , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Plantones/efectos de los fármacos , Plantones/ultraestructura , Regulación hacia Arriba/efectos de los fármacos
4.
Plant Signal Behav ; 10(10): e1071002, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26237004

RESUMEN

Mitochondria play an important role in maintaining metabolic and energy homeostasis in the plant cell. Thus, perturbation of mitochondrial structure and function will affect plant growth and development. Arabidopsis slow growth3 (slo3) is defective in At3g61360 that encodes a pentatricopeptide repeat (PPR) protein. Analysis of slo3 mitochondrial RNA metabolism revealed that the splicing of nad7 intron 2 is impaired, which leads to a dramatic reduction in complex I activity. So the SLO3 PPR protein is a splicing factor that is required for the removal of nad7 intron 2 in Arabidopsis. The slo3 mutant plants have obvious phenotypes with severe growth retardation and delayed development. The size of root apical meristem (RAM) is reduced and the production of meristem cells is decreased in slo3. Furthermore, the rosette leaves of slo3 are curled or crinkled, which may be derived from uneven growth of the leaf surface. The underlying mechanisms by which dysfunctional mitochondria affect these growth and developmental phenotypes have yet to be established. Nonetheless, plant hormone auxin is known to play an important role in orchestrating the development of RAM and leaf shape. It is possible that dysfunctional mitochondria may interact with auxin signaling pathways to regulate the boundary of RAM and the cell division arrest front during leaf growth in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Fenotipo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Puntos de Control del Ciclo Celular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Intrones , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Proteínas Mitocondriales/genética , Mutación , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Empalme del ARN , Factores de Empalme de ARN , ARN de Planta/metabolismo , Plantones , Transducción de Señal
5.
Plant Physiol ; 168(2): 490-501, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25888618

RESUMEN

Mitochondria play an important role in maintaining metabolic and energy homeostasis in the cell. In plants, impairment in mitochondrial functions usually has detrimental effects on growth and development. To study genes that are important for plant growth, we have isolated a collection of slow growth (slo) mutants in Arabidopsis (Arabidopsis thaliana). One of the slo mutants, slo3, has a significant reduction in mitochondrial complex I activity. The slo3 mutant has a four-nucleotide deletion in At3g61360 that encodes a pentatricopeptide repeat (PPR) protein. The SLO3 protein contains nine classic PPR domains belonging to the P subfamily. The small deletion in the slo3 mutant changes the reading frame and creates a premature stop codon in the first PPR domain. We demonstrated that the SLO3-GFP is localized to the mitochondrion. Further analysis of mitochondrial RNA metabolism revealed that the slo3 mutant was defective in splicing of NADH dehydrogenase subunit7 (nad7) intron 2. This specific splicing defect led to a dramatic reduction in complex I activity in the mutant as revealed by blue native gel analysis. Complementation of slo3 by 35S:SLO3 or 35S:SLO3-GFP restored the splicing of nad7 intron 2, the complex I activity, and the growth defects of the mutant. Together, these results indicate that the SLO3 PPR protein is a splicing factor of nad7 intron 2 in Arabidopsis mitochondria.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Intrones/genética , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , NADH Deshidrogenasa/genética , Empalme del ARN/genética , Secuencias Repetitivas de Aminoácido , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/enzimología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Proliferación Celular , ADN Complementario/genética , Complejo I de Transporte de Electrón/metabolismo , Genes de Plantas , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Mutación/genética , NADH Deshidrogenasa/metabolismo , Fenotipo , Raíces de Plantas , Transporte de Proteínas , Edición de ARN , Factores de Empalme de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...