Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 27(6): 110108, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38952685

RESUMEN

To study neurovascular function in type 2 diabetes mellitus (T2DM), we established a high-fat diet/streptozotocin (HFD/STZ) rat model. Electrocorticography-laser speckle contrast imaging (ECoG-LSCI) revealed that the somatosensory-evoked potential (SSEP) amplitude and blood perfusion volume were significantly lower in the HFD/STZ group. Cortical spreading depression (CSD) velocity was used as a measure of neurovascular function, and the results showed that the blood flow velocity and the number of CSD events were significantly lower in the HFD/STZ group. In addition, to compare changes during acute hyperglycemia and hyperglycemia, we used intraperitoneal injection (IPI) of glucose to induce transient hyperglycemia. The results showed that CSD velocity and blood flow were significantly reduced in the IPI group. The significant neurovascular changes observed in the brains of rats in the HFD/STZ group suggest that changes in neuronal apoptosis may play a role in altered glucose homeostasis in T2DM.

2.
iScience ; 27(6): 110033, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38947531

RESUMEN

Ischemic stroke can cause depolarized brain waves, termed peri-infarct depolarization (PID). Here, we evaluated whether topiramate, a neuroprotective drug used to treat epilepsy and alleviate migraine, has the potential to reduce PID. We employed a rat model of photothrombotic ischemia that can reliably and reproducibly induce PID and developed a combined electrocorticography-laser speckle contrast imaging (ECoG-LSCI) platform to monitor neuronal activity and cerebral blood flow (CBF) simultaneously. Topiramate administration after photothrombotic ischemia did not rescue CBF but significantly restored somatosensory evoked potentials in the forelimb area of the primary somatosensory cortex. Moreover, infarct volume was investigated by 2,3,5-triphenyltetrazolium chloride (TTC) staining, and neuronal survival was evaluated by Nissl staining. Mechanistically, the levels of inflammatory markers, such as ED1 (CD68), Iba-1, and GFAP, decreased significantly after topiramate administration, as did BDNF expression, while the expression of NeuN and Bcl-2/Bax increased, which is indicative of reduced inflammation and improved neuroprotection.

3.
APL Bioeng ; 8(1): 016105, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38292062

RESUMEN

Wound monitoring is crucial for effective healing, as nonhealing wounds can lead to tissue ulceration and necrosis. Evaluating wound recovery involves observing changes in angiogenesis. Laser speckle contrast imaging (LSCI) is vital for wound assessment due to its rapid imaging, high resolution, wide coverage, and noncontact properties. When using LSCI equipment, regions of interest (ROIs) must be delineated in lesion areas in images for quantitative analysis. However, patients with serious wounds cannot maintain constant postures because the affected areas are often associated with discomfort and pain. This leads to deviations between the drawn ROI and actual wound position when using LSCI for wound assessment, affecting the reliability of relevant assessments. To address these issues, we used the channel and spatial reliability tracker object tracking algorithm to develop an automatic ROI tracking function for LSCI systems. This algorithm is used to track and correct artificial movements in blood flow images, address the ROI position offset caused by the movement of the affected body part, increase the blood flow analysis accuracy, and improve the clinical applicability of LSCI systems. ROI tracking experiments were performed by simulating wounds, and the results showed that the intraclass correlation coefficient (ICC) ranged from 0.134 to 0.976. Furthermore, the object within the ROI affected tracking performance. Clinical assessments across wound types showed ICCs ranging from 0.798 to 0.917 for acute wounds and 0.628-0.849 for chronic wounds. We also discuss factors affecting tracking performance and propose strategies to enhance implementation effectiveness.

4.
Adv Sci (Weinh) ; 10(33): e2303566, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37867218

RESUMEN

Endogenous signals, namely nitric oxide (NO) and electrons, play a crucial role in regulating cell fate as well as the vascular and neuronal systems. Unfortunately, utilizing NO and electrical stimulation in clinical settings can be challenging due to NO's short half-life and the invasive electrodes required for electrical stimulation. Additionally, there is a lack of tools to spatiotemporally control gas release and electrical stimulation. To address these issues, an "electromagnetic messenger" approach that employs on-demand high-frequency magnetic field (HFMF) to trigger NO release and electrical stimulation for restoring brain function in cases of traumatic brain injury is introduced. The system comprises a NO donor (poly(S-nitrosoglutathione), pGSNO)-conjugated on a gold yarn-dynamos (GY) and embedded in an implantable silk in a microneedle. When subjected to HFMF, conductive GY induces eddy currents that stimulate the release of NO from pGSNO. This process significantly enhances neural stem cell (NSC) synapses' differentiation and growth. The combined strategy of using NO and electrical stimulation to inhibit inflammation, angiogenesis, and neuronal interrogation in traumatic brain injury is demonstrated in vivo.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Células-Madre Neurales , Humanos , Óxido Nítrico , Oro , Neuronas/fisiología , Lesiones Traumáticas del Encéfalo/terapia
5.
APL Bioeng ; 7(3): 036119, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37781728

RESUMEN

Clinical and preclinical studies on epileptic seizures are closely linked to the study of neurovascular coupling. Obtaining reliable information about cerebral blood flow (CBF) in the area of epileptic activity through minimally invasive techniques is crucial for research in this field. In our studies, we used laser speckle contrast imaging (LSCI) to gather information about the local blood circulation in the area of epileptic activity. We used two models of epileptic seizures: one based on 4-aminopyridine (4-AP) and another based on pentylenetetrazole (PTZ). We verified the duration of an epileptic seizure using electrocorticography (ECoG). We applied the antiepileptic drug topiramate (TPM) to both models, but its effect was different in each case. However, in both models, TPM had an effect on neurovascular coupling in the area of epileptic activity, as shown by both LSCI and ECoG data. We demonstrated that TPM significantly reduced the amplitude of 4-AP-induced epileptic seizures (4-AP+TPM: 0.61 ± 0.13 mV vs 4-AP: 1.08 ± 0.19 mV; p < 0.05), and it also reduced gamma power in ECoG in PTZ-induced epileptic seizures (PTZ+TPM: 38.5% ± 11.9% of the peak value vs PTZ: 59.2% ± 3.0% of peak value; p < 0.05). We also captured the pattern of CBF changes during focal epileptic seizures induced by 4-AP. Our data confirm that the system of simultaneous cortical LSCI and registration of ECoG makes it possible to evaluate the effectiveness of pharmacological agents in various types of epileptic seizures in in vivo models and provides spatial and temporal information on the process of ictogenesis.

6.
Adv Healthc Mater ; : e2302315, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713592

RESUMEN

Traumatic brain injury (TBI) triggers inflammatory response and glial scarring, thus substantially hindering brain tissue repair. This process is exacerbated by the accumulation of activated immunocytes at the injury site, which contributes to scar formation and impedes tissue repair. In this study, a mussel-inspired nitric oxide-release microreservoir (MINOR) that combines the features of reactive oxygen species (ROS) scavengers and sustained NO release to promote angiogenesis and neurogenesis is developed for TBI therapy. The injectable MINOR fabricated using a microfluidic device exhibits excellent monodispersity and gel-like self-healing properties, thus allowing the maintenance of its structural integrity and functionality upon injection. Furthermore, polydopamine in the MINOR enhances cell adhesion, significantly reduces ROS levels, and suppresses inflammation. Moreover, a nitric oxide (NO) donor embedded into the MINOR enables the sustained release of NO, thus facilitating angiogenesis and mitigating inflammatory responses. By harnessing these synergistic effects, the biocompatible MINOR demonstrates remarkable efficacy in enhancing recovery in mice. These findings benefit future therapeutic interventions for patients with TBI.

7.
Med Biol Eng Comput ; 61(11): 2797-2814, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37558927

RESUMEN

Zebrafish have become a widely accepted model organism for biomedical research due to their strong cortisol stress response, behavioral strain differences, and sensitivity to both drug treatments and predators. However, experimental zebrafish studies generate substantial data that must be analyzed through objective, accurate, and repeatable analysis methods. Recently, advancements in artificial intelligence (AI) have enabled automated tracking, image recognition, and data analysis, leading to more efficient and insightful investigations. In this review, we examine key AI applications in zebrafish research, including behavior analysis, genomics, and neuroscience. With the development of deep learning technology, AI algorithms have been used to precisely analyze and identify images of zebrafish, enabling automated testing and analysis. By applying AI algorithms in genomics research, researchers have elucidated the relationship between genes and biology, providing a better basis for the development of disease treatments and gene therapies. Additionally, the development of more effective neuroscience tools could help researchers better understand the complex neural networks in the zebrafish brain. In the future, further advancements in AI technology are expected to enable more extensive and in-depth medical research applications in zebrafish, improving our understanding of this important animal model. This review highlights the potential of AI technology in achieving the full potential of zebrafish research by enabling researchers to efficiently track, process, and visualize the outcomes of their experiments.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Animales , Pez Cebra , Algoritmos , Redes Neurales de la Computación
8.
Med Biol Eng Comput ; 61(11): 3003-3019, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37563528

RESUMEN

Brain-computer interfaces (BCIs) allow communication between the brain and the external world. This type of technology has been extensively studied. However, BCI instruments with high signal quality are typically heavy and large. Thus, recording electroencephalography (EEG) signals is an inconvenient task. In recent years, system-on-chip (SoC) approaches have been integrated into BCI research, and sensors for wireless portable devices have been developed; however, there is still considerable work to be done. As neuroscience research has advanced, EEG signal analyses have come to require more accurate data. Due to the limited bandwidth of Bluetooth wireless transmission technology, EEG measurement systems with more than 16 channels must be used to reduce the sampling rate and prevent data loss. Therefore, the goal of this study was to develop a multichannel, high-resolution (24-bit), high-sampling-rate EEG BCI device that transmits signals via Wi-Fi. We believe that this system can be used in neuroscience research. The EEG acquisition system proposed in this work is based on a Cortex-M4 microcontroller with a Wi-Fi subsystem, providing a multichannel design and improved signal quality. This system is compatible with wet sensors, Ag/AgCl electrodes, and dry sensors. A LabVIEW-based user interface receives EEG data via Wi-Fi transmission and saves the raw data for offline analysis. In previous cognitive experiments, event tags have been communicated using Recommended Standard 232 (RS-232). The developed system was validated through event-related potential (ERP) and steady-state visually evoked potential (SSVEP) experiments. Our experimental results demonstrate that this system is suitable for recording EEG measurements and has potential in practical applications. The advantages of the developed system include its high sampling rate and high amplification. Additionally, in the future, Internet of Things (IoT) technology can be integrated into the system for remote real-time analysis or edge computing.


Asunto(s)
Interfaces Cerebro-Computador , Dispositivos Electrónicos Vestibles , Electroencefalografía/métodos , Potenciales Evocados , Corteza Cerebral , Potenciales Evocados Visuales
9.
Front Public Health ; 11: 1188304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397724

RESUMEN

The COVID-19 pandemic brought the world to a standstill, posing unprecedented challenges for healthcare systems worldwide. The overwhelming number of patients infected with the virus placed an enormous burden on healthcare providers, who struggled to cope with the sheer volume of cases. Furthermore, the lack of effective treatments or vaccines means that quarantining has become a necessary measure to slow the spread of the virus. However, quarantining places a significant burden on healthcare providers, who often lack the resources to monitor patients with mild symptoms or asymptomatic patients. In this study, we propose an Internet of Things (IoT)-based wearable health monitoring system that can remotely monitor the exact locations and physiological parameters of quarantined individuals in real time. The system utilizes a combination of highly miniaturized optoelectronic and electronic technologies, an anti-epidemic watch, a mini-computer, and a monitor terminal to provide real-time updates on physiological parameters. Body temperature, peripheral oxygen saturation (SpO2), and heart rate are recorded as the most important measurements for critical care. If these three physiological parameters are aberrant, then it could represent a life-endangering situation and/or a short period over which irreversible damage may occur. Therefore, these parameters are automatically uploaded to a cloud database for remote monitoring by healthcare providers. The monitor terminal can display real-time health data for multiple patients and provide early warning functions for medical staff. The system significantly reduces the burden on healthcare providers, as it eliminates the need for manual monitoring of patients in quarantine. Moreover, it can help healthcare providers manage the COVID-19 pandemic more effectively by identifying patients who require medical attention in real time. We have validated the system and demonstrated that it is well suited to practical application, making it a promising solution for managing future pandemics. In summary, our IoT-based wearable health monitoring system has the potential to revolutionize healthcare by providing a cost-effective, remote monitoring solution for patients in quarantine. By allowing healthcare providers to monitor patients remotely in real time, the burden on medical resources is reduced, and more efficient use of limited resources is achieved. Furthermore, the system can be easily scaled to manage future pandemics, making it an ideal solution for managing the health challenges of the future.


Asunto(s)
COVID-19 , Internet de las Cosas , Dispositivos Electrónicos Vestibles , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , Monitoreo Fisiológico
10.
Biomater Res ; 27(1): 65, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415210

RESUMEN

BACKGROUND: Ischemic stroke-reperfusion (S/R) injury is a crucial issue in the protection of brain function after thrombolysis. The vasodilation induced by ultrasound (US)-stimulated microbubble cavitation has been applied to reduce S/R injury through sonoperfusion. The present study uses oxygen-loaded microbubbles (OMBs) with US stimulation to provide sonoperfusion and local oxygen therapy for the reduction of brain infarct size and neuroprotection after S/R. METHODS: The murine S/R model was established by photodynamic thrombosis and thrombolysis at the remote branch of the anterior cerebral artery. In vivo blood flow, partial oxygen pressure (pO2), and brain infarct staining were examined to analyze the validity of the animal model and OMB treatment results. The animal behaviors and measurement of the brain infarct area were used to evaluate long-term recovery of brain function. RESULTS: The percentage of blood flow was 45 ± 3%, 70 ± 3%, and 86 ± 2% after 60 min stroke, 20 min reperfusion, and 10 min OMB treatment, respectively, demonstrating sonoperfusion, and the corresponding pO2 level was 60 ± 1%, 76 ± 2%, and 79 ± 4%, showing reoxygenation. After 14 days of treatment, a 87 ± 3% reduction in brain infarction and recovery of limb coordination were observed in S/R mice. The expression of NF-κB, HIF-1α, IL-1ß, and MMP-9 was inhibited and that of eNOS, BDNF, Bcl2, and IL-10 was enhanced, indicating activation of anti-inflammatory and anti-apoptosis responses and neuroprotection. Our study demonstrated that OMB treatment combines the beneficial effects of sonoperfusion and local oxygen therapy to reduce brain infarction and activate neuroprotection to prevent S/R injury.

11.
Nanomaterials (Basel) ; 13(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37299694

RESUMEN

Although radiotherapy is one of the most important curative treatments for cancer, its clinical application is associated with undesired therapeutic effects on normal or healthy tissues. The use of targeted agents that can simultaneously achieve therapeutic and imaging functions could constitute a potential solution. Herein, we developed 2-deoxy-d-glucose (2DG)-labeled poly(ethylene glycol) (PEG) gold nanodots (2DG-PEG-AuD) as a tumor-targeted computed tomography (CT) contrast agent and radiosensitizer. The key advantages of the design are its biocompatibility and targeted AuD with excellent sensitivity in tumor detection via avid glucose metabolism. As a consequence, CT imaging with enhanced sensitivity and remarkable radiotherapeutic efficacy could be attained. Our synthesized AuD displayed linear enhancement of CT contrast as a function of its concentration. In addition, 2DG-PEG-AuD successfully demonstrated significant augmentation of CT contrast in both in vitro cell studies and in vivo tumor-bearing mouse models. In tumor-bearing mice, 2DG-PEG-AuD showed excellent radiosensitizing functions after intravenous injection. Results from this work indicate that 2DG-PEG-AuD could greatly potentiate theranostic capabilities by providing high-resolution anatomical and functional images in a single CT scan and therapeutic capability.

12.
J Control Release ; 358: 718-728, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37230295

RESUMEN

Adoptive T cells and immunotherapy suppress the most destructive metastatic tumors and prevent tumor recurrence by inducing T lymphocytes. However, the heterogeneity and immune privilege of invasive metastatic clusters often reduce immune cell infiltration and therapeutic efficacy. Here, the red blood cells (RBC)-hitchhiking mediated lung metastasis delivery of multi-grained iron oxide nanostructures (MIO) programming the antigen capture, dendritic cell harnessing, and T cell recruitment is developed. MIO is assembled to the surface of RBCs by osmotic shock-mediated fusion, and reversible interactions enable the transfer of MIO to pulmonary capillary endothelial cells by intravenous injection by squeezing RBCs at the pulmonary microvessels. RBC-hitchhiking delivery revealed that >65% of MIOs co-localized in tumors rather than normal tissues. In alternating magnetic field (AMF)-mediated magnetic lysis, MIO leads to the release of tumor-associated antigens, namely neoantigens and damage-associated molecular patterns. It also acted as an antigen capture agent-harnessed dendritic cells delivers these antigens to lymph nodes. By utilizing site-specific targeting, erythrocyte hitchhiker-mediated delivery of MIO to lung metastases improves survival and immune responses in mice with metastatic lung tumors.


Asunto(s)
Células Endoteliales , Neoplasias Pulmonares , Animales , Ratones , Neoplasias Pulmonares/patología , Antígenos de Neoplasias , Pulmón/patología , Células Dendríticas
13.
IEEE Trans Ultrason Ferroelectr Freq Control ; 70(12): 1682-1690, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37216240

RESUMEN

Sonodynamic therapy (SDT) is a promising approach for cancer treatment that uses sonosensitizers (SNSs) to generate reactive oxygen species (ROS) in the presence of ultrasound (US). However, SDT is oxygen-dependent and requires an imaging tool to monitor the tumor microenvironment and guide treatment. Photoacoustic imaging (PAI) is a noninvasive and powerful imaging tool that offers high spatial resolution and deep tissue penetration. PAI can quantitatively assess tumor oxygen saturation (sO2) and guide SDT by monitoring time-dependent sO2 changes in the tumor microenvironment. Here, we discuss recent advances in PAI-guided SDT for cancer therapy. We discuss various exogenous contrast agents and nanomaterial-based SNSs developed for PAI-guided SDT. Additionally, combining SDT with other therapies, including photothermal (PTT) therapy, can enhance its therapeutic effect. However, the application of nanomaterial-based contrast agents in PAI-guided SDT for cancer therapy remains challenging due to the lack of simple designs, the need for extensive pharmacokinetic studies, and high production costs. Integrated efforts from researchers, clinicians, and industry consortia are necessary for the successful clinical translation of these agents and SDT for personalized cancer therapy. PAI-guided SDT shows the potential to revolutionize cancer therapy and improve patient outcomes, but further research is necessary to realize its full potential.


Asunto(s)
Neoplasias , Técnicas Fotoacústicas , Terapia por Ultrasonido , Humanos , Medios de Contraste , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Especies Reactivas de Oxígeno , Línea Celular Tumoral , Microambiente Tumoral
14.
iScience ; 26(4): 106354, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37035001

RESUMEN

Physical activity in the form of aerobic exercise has many beneficial effects on brain function. Here, we aim to revisit the effects of exercise on brain morphology and neurovascular organization using a rat running model. Electrocorticography (ECoG) was integrated with laser speckle contrast imaging (LSCI) and applied to simultaneously detect CSD propagation and the corresponding neurovascular function. In addition, blood oxygenation level-dependent (BOLD) signal in fMRI was used to observe cerebral utilization of oxygen. Results showed significant decrease in somatosensory evoked potentials (SSEPs) and deceleration of CSD propagation in the EXE group. Western blot results in the EXE group showed significant increases in BDNF, GFAP, and NeuN levels and significant decreases in neurodegenerative disease markers. Decreases in SSEP and CSD parameters may result from exercise-induced increases in cerebrovascular system function and increases in the stability and buffering of extracellular ion concentrations and cortical excitability.

15.
J Control Release ; 356: 481-492, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36921723

RESUMEN

Ischemia-reperfusion (I/R) injury is a pathological process that causes vascular damage and dysfunction which increases recurrence and/or mortality in myocardial infarction, ischemic stroke, and organ transplantation. We hypothesized that ultrasound-stimulated oxygen-loaded microbubble (O2-MB) cavitation would enhance mechanical force on endothelium and simultaneously release oxygen locally at the targeted vessels. This cooperation between biomechanical and biochemical stimuli might modulate endothelial metabolism, providing a potential clinical approach to the prevention of I/R injury. Murine hindlimb and cardiac I/R models were used to demonstrate the feasibility of injury prevention by O2-MB cavitation. Increased mechanical force on endothelium induced eNOS-activated vasodilation and angiogenesis to prevent re-occlusion at the I/R vessels. Local oxygen therapy increased endothelial oxygenation that inhibited HIF-1α expression, increased ATP generation, and activated cyclin D1 for cell repair. Moreover, a decrease in interstitial H2O2 level reduced the expression of caspase3, NFκB, TNFα, and IL6, thus ameliorating inflammatory responses. O2-MB cavitation showed efficacy in maintaining cardiac function and preventing myocardial fibrosis after I/R. Finally, we present a potential pathway for the modulation of endothelial metabolism by O2-MB cavitation in relation to I/R injury, wound healing, and vascular bioeffects.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión , Ratones , Animales , Peróxido de Hidrógeno , Daño por Reperfusión/prevención & control , Infarto del Miocardio/prevención & control , Oxígeno/metabolismo , Pulmón/metabolismo
16.
Front Bioeng Biotechnol ; 11: 1100968, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741759

RESUMEN

An essential aspect of controlling and preventing mosquito-borne diseases is to reduce mosquitoes that carry viruses. We designed a smart mosquito trap system to reduce the density of mosquito vectors and the spread of mosquito-borne diseases. This smart trap uses computer vision technology and deep learning networks to identify features of live Aedes aegypti and Culex quinquefasciatus in real-time. A unique mechanical design based on the rotation concept is also proposed and implemented to capture specific living mosquitoes into the corresponding chambers successfully. Moreover, this system is equipped with sensors to detect environmental data, such as CO2 concentration, temperature, and humidity. We successfully demonstrated the implementation of such a tool and paired it with a reliable capture mechanism for live mosquitos without destroying important morphological features. The neural network achieved 91.57% accuracy with test set images. When the trap prototype was applied in a tent, the accuracy rate in distinguishing live Ae. aegypti was 92%, with a capture rate reaching 44%. When the prototype was placed into a BG trap to produce a smart mosquito trap, it achieved a 97% recognition rate and a 67% catch rate when placed in the tent. In a simulated living room, the recognition and capture rates were 90% and 49%, respectively. This smart trap correctly differentiated between Cx. quinquefasciatus and Ae. aegypti mosquitoes, and may also help control mosquito-borne diseases and predict their possible outbreak.

17.
Biosensors (Basel) ; 13(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36671941

RESUMEN

In photoacoustic (PA) imaging, tissue absorbs specific wavelengths of light. The absorbed energy results in thermal expansion that generates ultrasound waves that are reconstructed into images. Existing commercial PA imaging systems for preclinical brain imaging are limited by imprecise positioning capabilities and inflexible user interfaces. We introduce a new visible charge-coupled device (CCD) camera-guided photoacoustic imaging (ViCPAI) system that integrates an ultrasound (US) transducer and a data acquisition platform with a CCD camera for positioning. The CCD camera accurately positions the US probe at the measurement location. The programmable MATLAB-based platform has an intuitive user interface. In vitro carbon fiber and in vivo animal experiments were performed to investigate the precise positioning and imaging capabilities of the ViCPAI system. We demonstrated real-time capturing of bilateral cerebral hemodynamic changes during (1) forelimb electrical stimulation under normal conditions, (2) forelimb stimulation after right brain focal photothrombotic ischemia (PTI) stroke, and (3) progression of KCl-induced cortical spreading depression (CSD). The ViCPAI system accurately located target areas and achieved reproducible positioning, which is crucial in animal and clinical experiments. In animal experiments, the ViCPAI system was used to investigate bilateral cerebral cortex responses to left forelimb electrical stimulation before and after stroke, showing that the CBV and SO2 in the right primary somatosensory cortex of the forelimb (S1FL) region were significantly changed by left forelimb electrical stimulation before stroke. No CBV or SO2 changes were observed in the bilateral cortex in the S1FL area in response to left forelimb electrical stimulation after stroke. While monitoring CSD progression, the ViCPAI system accurately locates the S1FL area and returns to the same position after the probe moves, demonstrating reproducible positioning and reducing positioning errors. The ViCPAI system utilizes the real-time precise positioning capability of CCD cameras to overcome various challenges in preclinical and clinical studies.


Asunto(s)
Técnicas Fotoacústicas , Accidente Cerebrovascular , Ratas , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Corteza Cerebral/fisiología , Neuroimagen
19.
Heliyon ; 8(11): e11698, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36458306

RESUMEN

The popularization of long-term invasive tools for continuously monitoring blood pressure remains challenging. However, with the rising popularity of wearable personal health management devices, non-cuff blood pressure measurement technology that applies electrocardiography (ECG) and photoplethysmography (PPG) has gradually received increasing attention. In particular, whether blood pressure can be measured continuously by the PPG signal alone is of great interest. In this study, we aim to develop a device that includes systolic and diastolic blood pressure calculation formulas derived from characteristic waveform points in the PPG time domain and that can measure blood oxygenation and heart rate. This device applies empirical formulas developed by PPG waveforms in the PhysioNet MIMIC-II database to calculate blood pressure. The systolic and diastolic pressures are then compared with the actual blood pressures obtained from invasive blood pressure waveforms to verify the effectiveness and feasibility of the complete developed system. Overall, 263 waveforms with double peaks and 261 waveforms with only a single peak totaling 524 sets of data are used to derive the empirical formulas. The systolic blood pressure estimation result using single peak analysis has an excessively large error exceeding ±40 mmHg, providing no reference value. However, systolic blood pressure estimation is notably better in double peak analysis, with error values reducing to approximately 23 mmHg. Diastolic pressure estimation errors are low with both single (±7 mmHg) and double peak (±4 mmHg) analyses. The error is lower in double-peak analysis than in single-peak analysis for obtaining systolic pressure from PPG waves. We plan to use PPG to detect additional physiological parameters in the future, e.g., respiratory rate, heart rate variability, or irregular heartbeat, to further enhance the functionality of PPG-based wearable devices.

20.
Biosensors (Basel) ; 12(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36551064

RESUMEN

Wearable devices are being developed faster and applied more widely. Wearables have been used to monitor movement-related physiological indices, including heartbeat, movement, and other exercise metrics, for health purposes. People are also paying more attention to mental health issues, such as stress management. Wearable devices can be used to monitor emotional status and provide preliminary diagnoses and guided training functions. The nervous system responds to stress, which directly affects eye movements and sweat secretion. Therefore, the changes in brain potential, eye potential, and cortisol content in sweat could be used to interpret emotional changes, fatigue levels, and physiological and psychological stress. To better assess users, stress-sensing devices can be integrated with applications to improve cognitive function, attention, sports performance, learning ability, and stress release. These application-related wearables can be used in medical diagnosis and treatment, such as for attention-deficit hyperactivity disorder (ADHD), traumatic stress syndrome, and insomnia, thus facilitating precision medicine. However, many factors contribute to data errors and incorrect assessments, including the various wearable devices, sensor types, data reception methods, data processing accuracy and algorithms, application reliability and validity, and actual user actions. Therefore, in the future, medical platforms for wearable devices and applications should be developed, and product implementations should be evaluated clinically to confirm product accuracy and perform reliable research.


Asunto(s)
Rendimiento Atlético , Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Humanos , Reproducibilidad de los Resultados , Sudor , Monitoreo Fisiológico/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...