Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiol Res ; 289: 127906, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39321594

RESUMEN

The challenge of soil salinization and alkalization, with its significant impact on crop productivity, has raised growing concerns with global population growth and enhanced environmental degradation. Although arbuscular mycorrhizal fungi (AMF) and calcium ions (Ca2+) are known to enhance plant resistance to stress, their combined effects on perennial ryegrass' tolerance to salt and alkali stress and the underlying mechanisms remain poorly understood. This study aimed to elucidate the roles of Arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis and exogenous Ca2+ application in molecular and physiological responses to salt-alkali stress. AM symbiosis and exogenous Ca2+ application enhanced antioxidant enzyme activity and non-enzymatic components, promoting reactive oxygen species (ROS) scavenging and reducing lipid peroxidation while alleviating oxidative damage induced by salt-alkali stress. Furthermore, they enhanced osmotic balance by increasing soluble sugar content (Proportion of contribution of the osmotic adjustment were 34∼38 % in shoots and 30∼37 % in roots) under salt stress and organic acid content (Proportion of contribution of the osmotic adjustment were 32∼36 % in shoots and 37∼42 % in roots) under alkali stress. Changes in organic solute and inorganic cation-anion contents contributed to ion balance, while hormonal regulation played a role in these protective mechanisms. Moreover, the protective mechanisms involved activation of Ca2+-mediated signaling pathways, regulation of salt-alkali stress-related genes (including LpNHX1 and LpSOS1), increased ATPase activity, elevated ATP levels, enhanced Na+ extrusion, improved K+ absorption capacity, and a reduced Na+/K+ ratio, all contributing to the protection of photosynthetic pigments and the enhancement of photosynthetic efficiency. Ultimately, the combined application of exogenous Ca2+ and AMF synergistically alleviated the inhibitory effects of salt-alkali stress on perennial ryegrass growth. This finding suggested that exogenous Ca2+ may participate in the colonization of perennial ryegrass plants by R. irregularis, while AM symbiosis may activate Ca2+ pathways. Consequently, the combined treatment of AM and Ca2+ is beneficial for enhancing plant regulatory mechanisms and increasing crop yield under salt-alkali stress.

2.
PeerJ ; 12: e17680, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993981

RESUMEN

Morphological attributes and chemical composition of host plants shape growth and development of phytophagous insects via influences on their behavior and physiological processes. This research delves into the relationship between Eriogyna pyretorum and various host plants through studuying how feeding on different host tree species affect growth, development, and physiological enzyme activities. We examined E. pyretorum response to three distinct host plants: Camphora officinarum, Liquidambar formosana and Pterocarya stenoptera. Notably, larvae feeding on C. officinarum and L. formosana displayed accelerated development, increased pupal length, and higher survival rates compared to those on P. stenoptera. This underlines the pivotal role of host plant selection in shaping the E. pyretorum's life cycle. The activities of a-amylase, lipase and protective enzymes were the highest in larvae fed on the most suitable host L. formosana which indicated that the increase of these enzyme activities was closely related to growth and development. Furthermore, our investigation revealed a relationship between enzymatic activities and host plants. Digestive enzymes, protective enzymes, and detoxifying enzymes exhibited substantial variations contingent upon the ingested host plant. Moreover, the total phenolics content in the host plant leaves manifested a noteworthy positive correlation with catalase and lipase activities. In contrast, a marked negative correlation emerged with glutathione S-transferase and α-amylase activities. The total developmental duration of larvae exhibited a significant positive correlation with the activities of GST and CarE. The survival rate of larvae showed a significant positive correlation with CYP450. These observations underscore the insect's remarkable adaptability in orchestrating metabolic processes in accordance with available nutritional resources. This study highlights the interplay between E. pyretorum and its host plants, offering novel insights into how different vegetation types influence growth, development, and physiological responses. These findings contribute to a deeper comprehension of insect-plant interactions, with potential applications in pest management and ecological conservation.


Asunto(s)
Larva , Animales , Larva/crecimiento & desarrollo , Larva/enzimología , Hojas de la Planta/parasitología , Hojas de la Planta/metabolismo , Mariposas Nocturnas/enzimología , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/fisiología
3.
J Econ Entomol ; 117(1): 209-217, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38124401

RESUMEN

Perina nuda (Lepidoptera: Lymantriidae) is a serious pest of banyan trees (Ficus spp.), which is distributed in South China, but little is known about the host preference on the different banyan tree species. To address this gap, we conducted experiments to investigate larval feeding preferences, assessing the impact of feeding experience in both choice and no-choice conditions. Fifth and sixth instars were exposed to 4 banyan species, and food intake, feeding area, and relative ingestion index were measured. Our findings reveal that Ficus concinna was the preferred host of fifth instars in choice tests, while sixth instars exhibited a preference for this host in no-choice tests. In contrast, fifth instars did not display a significant preference for any of the 4 species in no-choice tests. However, sixth instars fed on F. microcarpa, F. altissima, and F. concinna continued to exhibit a preference for the original host. These observations indicate that larval feeding preference changes with instar, and feeding experience contributes to a preference for the original host. Consequently, the feeding preference of P. nuda larvae is influenced by multiple factors, including instar and previous feeding experience. These findings enhance our understanding of P. nuda's ecological interactions and its potential impact on various banyan tree species.


Asunto(s)
Ficus , Lepidópteros , Mariposas Nocturnas , Animales , Larva , Conducta Alimentaria , Plantas , Árboles
4.
Front Microbiol ; 14: 1123632, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37283923

RESUMEN

Melatonin is a biomolecule that affects plant development and is involved in protecting plants from environmental stress. However, the mechanisms of melatonin's impact on arbuscular mycorrhizal (AM) symbiosis and cold tolerance in plants are still unclear. In this research, AM fungi inoculation and exogenous melatonin (MT) were applied to perennial ryegrass (Lolium perenne L.) seedlings alone or in combination to investigate their effect on cold tolerance. The study was conducted in two parts. The initial trial examined two variables, AM inoculation, and cold stress, to investigate the involvement of the AM fungus Rhizophagus irregularis in endogenous melatonin accumulation and the transcriptional levels of its synthesis genes in the root system of perennial ryegrass under cold stress. The subsequent trial was designed as a three-factor analysis, encompassing AM inoculation, cold stress, and melatonin application, to explore the effects of exogenous melatonin application on plant growth, AM symbiosis, antioxidant activity, and protective molecules in perennial ryegrass subjected to cold stress. The results of the study showed that compared to non-mycorrhizal (NM) plants, cold stress promoted an increase in the accumulation of melatonin in the AM-colonized counterparts. Acetylserotonin methyltransferase (ASMT) catalyzed the final enzymatic reaction in melatonin production. Melatonin accumulation was associated with the level of expression of the genes, LpASMT1 and LpASMT3. Treatment with melatonin can improve the colonization of AM fungi in plants. Simultaneous utilization of AM inoculation and melatonin treatment enhanced the growth, antioxidant activity, and phenylalanine ammonia-lyase (PAL) activity, while simultaneously reducing polyphenol oxidase (PPO) activity and altering osmotic regulation in the roots. These effects are expected to aid in the mitigation of cold stress in Lolium perenne. Overall, melatonin treatment would help Lolium perenne to improve growth by promoting AM symbiosis, improving the accumulation of protective molecules, and triggering in antioxidant activity under cold stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...