Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Imaging Inform Med ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514595

RESUMEN

Deep learning models have demonstrated great potential in medical imaging but are limited by the expensive, large volume of annotations required. To address this, we compared different active learning strategies by training models on subsets of the most informative images using real-world clinical datasets for brain tumor segmentation and proposing a framework that minimizes the data needed while maintaining performance. Then, 638 multi-institutional brain tumor magnetic resonance imaging scans were used to train three-dimensional U-net models and compare active learning strategies. Uncertainty estimation techniques including Bayesian estimation with dropout, bootstrapping, and margins sampling were compared to random query. Strategies to avoid annotating similar images were also considered. We determined the minimum data necessary to achieve performance equivalent to the model trained on the full dataset (α = 0.05). Bayesian approximation with dropout at training and testing showed results equivalent to that of the full data model (target) with around 30% of the training data needed by random query to achieve target performance (p = 0.018). Annotation redundancy restriction techniques can reduce the training data needed by random query to achieve target performance by 20%. We investigated various active learning strategies to minimize the annotation burden for three-dimensional brain tumor segmentation. Dropout uncertainty estimation achieved target performance with the least annotated data.

2.
Environ Int ; 174: 107905, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37019025

RESUMEN

BACKGROUND: Urbanicity refers to the conditions that are particular to urban areas and is a growing environmental challenge that may affect hippocampus and neurocognition. This study aimed to investigate the effects of the average pre-adulthood urbanicity on hippocampal subfield volumes and neurocognitive abilities as well as the sensitive age windows of the urbanicity effects. PARTICIPANTS AND METHODS: We included 5,390 CHIMGEN participants (3,538 females; age: 23.69 ± 2.26 years, range: 18-30 years). Pre-adulthood urbanicity of each participant was defined as the average value of annual night-time light (NL) or built-up% from age 0-18, which were extracted from remote-sensing satellite data based on annual residential coordinates of the participants. The hippocampal subfield volumes were calculated based on structural MRI and eight neurocognitive measures were assessed. The linear regression was applied to investigate the associations of pre-adulthood NL with hippocampal subfield volumes and neurocognitive abilities, mediation models were used to find the underlying pathways among urbanicity, hippocampus and neurocognition, and distributed lag models were used to identify sensitive age windows of urbanicity effect. RESULTS: Higher pre-adulthood NL was associated with greater volumes in the left (ß = 0.100, 95%CI: [0.075, 0.125]) and right (0.078, [0.052, 0.103]) fimbria and left subiculum body (0.045, [0.020, 0.070]) and better neurocognitive abilities in information processing speed (-0.212, [-0.240, -0.183]), working memory (0.085, [0.057, 0.114]), episodic memory (0.107, [0.080, 0.135]), and immediate (0.094, [0.065, 0.123]) and delayed (0.087, [0.058, 0.116]) visuospatial recall, and hippocampal subfield volumes and visuospatial memory showed bilateral mediations for the urbanicity effects. Urbanicity effects were greatest on the fimbria in preschool and adolescence, on visuospatial memory and information processing from childhood to adolescence and on working memory after 14 years. CONCLUSION: These findings improve our understanding of the impact of urbanicity on hippocampus and neurocognitive abilities and will benefit for designing more targeted intervention for neurocognitive improvement.


Asunto(s)
Hipocampo , Memoria Episódica , Femenino , Adolescente , Humanos , Adulto Joven , Preescolar , Adulto , Niño , Recién Nacido , Lactante , Pruebas Neuropsicológicas , Memoria a Corto Plazo , Imagen por Resonancia Magnética
3.
Phys Med Biol ; 68(9)2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37019119

RESUMEN

Objective. Radiation therapy for head and neck (H&N) cancer relies on accurate segmentation of the primary tumor. A robust, accurate, and automated gross tumor volume segmentation method is warranted for H&N cancer therapeutic management. The purpose of this study is to develop a novel deep learning segmentation model for H&N cancer based on independent and combined CT and FDG-PET modalities.Approach. In this study, we developed a robust deep learning-based model leveraging information from both CT and PET. We implemented a 3D U-Net architecture with 5 levels of encoding and decoding, computing model loss through deep supervision. We used a channel dropout technique to emulate different combinations of input modalities. This technique prevents potential performance issues when only one modality is available, increasing model robustness. We implemented ensemble modeling by combining two types of convolutions with differing receptive fields, conventional and dilated, to improve capture of both fine details and global information.Main Results. Our proposed methods yielded promising results, with a Dice similarity coefficient (DSC) of 0.802 when deployed on combined CT and PET, DSC of 0.610 when deployed on CT, and DSC of 0.750 when deployed on PET.Significance. Application of a channel dropout method allowed for a single model to achieve high performance when deployed on either single modality images (CT or PET) or combined modality images (CT and PET). The presented segmentation techniques are clinically relevant to applications where images from a certain modality might not always be available.


Asunto(s)
Aprendizaje Profundo , Neoplasias de Cabeza y Cuello , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Rayos X , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos
4.
Front Endocrinol (Lausanne) ; 13: 1069437, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506054

RESUMEN

Introduction: Central and peripheral nervous systems are all involved in type 2 diabetic polyneuropathy mechanisms, but such subclinical changes and associations remain unknown. This study aims to explore subclinical changes of the central and peripheral and unveil their association. Methods: A total of 55 type-2 diabetes patients consisting of symptomatic (n = 23), subclinical (n = 12), and no polyneuropathy (n = 20) were enrolled in this study. Cerebral morphology, function, peripheral electrophysiology, and clinical information were collected and assessed using ANOVA and post-hoc analysis. Gaussian random field correction was used for multiple comparison corrections. Pearson/Spearman correlation analysis was used to evaluate the association of the cerebral with the peripheral. Results: When comparing the subclinical group with no polyneuropathy groups, no statistical differences were shown in peripheral evaluations except amplitudes of tibial nerves. At the same time, functional connectivity from the orbitofrontal to bilateral postcentral and middle temporal cortex increased significantly. Gray matter volume of orbitofrontal and its functional connectivity show a transient elevation in the subclinical group compared with the symptomatic group. Besides, gray matter volume in the orbitofrontal cortex negatively correlated with the Neuropathy Symptom Score (r = -0.5871, p < 0.001), Neuropathy Disability Score (r = -0.3682, p = 0.009), and Douleur Neuropathique en 4 questions (r = -0.4403, p = 0.003), and also found correlated positively with bilateral peroneal amplitude (r > 0.4, p < 0.05) and conduction velocities of the right sensory sural nerve(r = 0.3181, p = 0.03). Similarly, functional connectivity from the orbitofrontal to the postcentral cortex was positively associated with cold detection threshold (r = 0.3842, p = 0.03) and negatively associated with Neuropathy Symptom Score (r = -0.3460, p = 0.01). Discussion: Function and morphology of brain changes in subclinical type 2 diabetic polyneuropathy might serve as an earlier biomarker. Novel insights from subclinical stage to investigate the mechanism of type 2 diabetic polyneuropathy are warranted.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Humanos , Neuropatías Diabéticas/etiología , Neuropatías Diabéticas/complicaciones , Conducción Nerviosa/fisiología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico por imagen
5.
NPJ Digit Med ; 5(1): 5, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35031687

RESUMEN

While COVID-19 diagnosis and prognosis artificial intelligence models exist, very few can be implemented for practical use given their high risk of bias. We aimed to develop a diagnosis model that addresses notable shortcomings of prior studies, integrating it into a fully automated triage pipeline that examines chest radiographs for the presence, severity, and progression of COVID-19 pneumonia. Scans were collected using the DICOM Image Analysis and Archive, a system that communicates with a hospital's image repository. The authors collected over 6,500 non-public chest X-rays comprising diverse COVID-19 severities, along with radiology reports and RT-PCR data. The authors provisioned one internally held-out and two external test sets to assess model generalizability and compare performance to traditional radiologist interpretation. The pipeline was evaluated on a prospective cohort of 80 radiographs, reporting a 95% diagnostic accuracy. The study mitigates bias in AI model development and demonstrates the value of an end-to-end COVID-19 triage platform.

6.
Cerebellum ; 21(3): 358-367, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34264505

RESUMEN

Spinocerebellar ataxias (SCAs) are a large group of hereditary neurodegenerative diseases characterized by ataxia and dysarthria. Due to high clinical and genetic heterogeneity, many SCA families are undiagnosed. Herein, using linkage analysis, WES, and RP-PCR, we identified the largest SCA36 pedigree in Asia. This pedigree showed some distinct clinical characteristics. Cognitive impairment and gaze palsy are common and severe in SCA36 patients, especially long-course patients. Although no patients complained of hearing loss, most of them presented with hearing impairment in objective auxiliary examination. Voxel-based morphometry (VBM) demonstrated a reduction of volumes in cerebellum, brainstem, and thalamus (corrected P < 0.05). Reduced volumes in cerebellum were also found in presymptomatic carriers. Resting-state functional MRI (R-fMRI) found reduced ReHo values in left cerebellar posterior lobule (corrected P < 0.05). Diffusion tensor imaging (DTI) demonstrated a reduction of FA values in cerebellum, midbrain, superior and inferior cerebellar peduncle (corrected P < 0.05). MRS found reduced NAA/Cr values in cerebellar vermis and hemisphere (corrected P < 0.05). Our findings could provide new insights into management of SCA36 patients. Detailed auxiliary examination are recommended to assess hearing or peripheral nerve impairment, and we should pay more attention to eye movement and cognitive changes in patients. Furthermore, for the first time, our multimodel neuroimaging evaluation generate a full perspective of brain function and structure in SCA36 patients.


Asunto(s)
Imagen de Difusión Tensora , Ataxias Espinocerebelosas , Cerebelo , Humanos , Imagen por Resonancia Magnética , Linaje , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/genética
7.
Eur Radiol ; 32(1): 205-212, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34223954

RESUMEN

OBJECTIVES: Early recognition of coronavirus disease 2019 (COVID-19) severity can guide patient management. However, it is challenging to predict when COVID-19 patients will progress to critical illness. This study aimed to develop an artificial intelligence system to predict future deterioration to critical illness in COVID-19 patients. METHODS: An artificial intelligence (AI) system in a time-to-event analysis framework was developed to integrate chest CT and clinical data for risk prediction of future deterioration to critical illness in patients with COVID-19. RESULTS: A multi-institutional international cohort of 1,051 patients with RT-PCR confirmed COVID-19 and chest CT was included in this study. Of them, 282 patients developed critical illness, which was defined as requiring ICU admission and/or mechanical ventilation and/or reaching death during their hospital stay. The AI system achieved a C-index of 0.80 for predicting individual COVID-19 patients' to critical illness. The AI system successfully stratified the patients into high-risk and low-risk groups with distinct progression risks (p < 0.0001). CONCLUSIONS: Using CT imaging and clinical data, the AI system successfully predicted time to critical illness for individual patients and identified patients with high risk. AI has the potential to accurately triage patients and facilitate personalized treatment. KEY POINT: • AI system can predict time to critical illness for patients with COVID-19 by using CT imaging and clinical data.


Asunto(s)
COVID-19 , Inteligencia Artificial , Humanos , Estudios Retrospectivos , SARS-CoV-2 , Tomografía Computarizada por Rayos X
8.
J Digit Imaging ; 34(6): 1405-1413, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34727303

RESUMEN

In the era of data-driven medicine, rapid access and accurate interpretation of medical images are becoming increasingly important. The DICOM Image ANalysis and Archive (DIANA) system is an open-source, lightweight, and scalable Python interface that enables users to interact with hospital Picture Archiving and Communications Systems (PACS) to access such data. In this work, DIANA functionality was detailed and evaluated in the context of retrospective PACS data retrieval and two prospective clinical artificial intelligence (AI) pipelines: bone age (BA) estimation and intra-cranial hemorrhage (ICH) detection. DIANA orchestrates activity beginning with post-acquisition study discovery and ending with online notifications of findings. For AI applications, system latency (exam completion to system report time) was quantified and compared to that of clinicians (exam completion to initial report creation time). Mean DIANA latency was 9.04 ± 3.83 and 20.17 ± 10.16 min compared to clinician latency of 51.52 ± 58.9 and 65.62 ± 110.39 min for BA and ICH, respectively, with DIANA latencies being significantly lower (p < 0.001). DIANA's capabilities were also explored and found effective in retrieving and anonymizing protected health information for "big-data" medical imaging research and analysis. Mean per-image retrieval times were 1.12 ± 0.50 and 0.08 ± 0.01 s across x-ray and computed tomography studies, respectively. The data herein demonstrate that DIANA can flexibly integrate into existing hospital infrastructure and improve the process by which researchers/clinicians access imaging repository data. This results in a simplified workflow for large data retrieval and clinical integration of AI models.


Asunto(s)
Inteligencia Artificial , Sistemas de Información Radiológica , Humanos , Procesamiento de Imagen Asistido por Computador , Estudios Prospectivos , Estudios Retrospectivos
9.
Front Neurosci ; 15: 692575, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349618

RESUMEN

Radiation encephalopathy (RE) is an important potential complication in patients with nasopharyngeal carcinoma (NPC) who undergo radiotherapy (RT) that can affect the quality of life. However, a functional imaging biomarker of pre-symptomatic RE has not yet been established. This study aimed to assess radiation-induced gray matter functional alterations and explore fractional amplitude of low-frequency fluctuation (fALFF) as an imaging biomarker for predicting or diagnosing RE in patients with NPC. A total of 60 patients with NPC were examined, 21 in the pre-RT cohort and 39 in the post-RT cohort. Patients in the post-RT cohort were further divided into two subgroups according to the occurrence of RE in follow-up: post-RT non-RE (n = 21) and post-RT REproved infollow-up (n = 18). Surface-based and volume-based fALFF were used to detect radiation-induced functional alterations. Functional derived features were then adopted to construct a predictive model for the diagnosis of RE. We observed that surface-based fALFF could sensitively detect radiation-induced functional alterations in the intratemporal brain regions (such as the hippocampus and superior temporal gyrus), as well as the extratemporal regions (such as the insula and prefrontal lobe); however, no significant intergroup differences were observed using volume-based fALFF. No significant correlation between fALFF and radiation dose to the ipsilateral temporal lobe was observed. Support vector machine (SVM) analysis revealed that surface-based fALFF in the bilateral superior temporal gyri and left insula exhibited impressive performance (accuracy = 80.49%) in identifying patients likely to develop RE. We conclude that surface-based fALFF may serve as a sensitive imaging biomarker in the prediction of RE.

10.
Sci Rep ; 11(1): 11734, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083670

RESUMEN

To explore the role of chronic liver disease (CLD) in COVID-19. A total of 1439 consecutively hospitalized patients with COVID-19 from one large medical center in the United States from March 16, 2020 to April 23, 2020 were retrospectively identified. Clinical characteristics and outcomes were compared between patients with and without CLD. Postmortem examination of liver in 8 critically ill COVID-19 patients was performed. There was no significant difference in the incidence of CLD between critical and non-critical groups (4.1% vs 2.9%, p = 0.259), or COVID-19 related liver injury between patients with and without CLD (65.7% vs 49.7%, p = 0.065). Postmortem examination of liver demonstrated mild liver injury associated central vein outflow obstruction and minimal to moderate portal lymphocytic infiltrate without evidence of CLD. Patients with CLD were not associated with a higher risk of liver injury or critical/fatal outcomes. CLD was not a significant comorbid condition for COVID-19.


Asunto(s)
COVID-19/epidemiología , Hepatopatías/epidemiología , Lesión Pulmonar Aguda/epidemiología , Lesión Pulmonar Aguda/patología , Anciano , COVID-19/mortalidad , Enfermedad Crónica , Comorbilidad , Femenino , Humanos , Hepatopatías/patología , Pruebas de Función Hepática , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Estados Unidos/epidemiología
11.
EBioMedicine ; 68: 103402, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34098339

RESUMEN

BACKGROUND: Radiologists have difficulty distinguishing benign from malignant bone lesions because these lesions may have similar imaging appearances. The purpose of this study was to develop a deep learning algorithm that can differentiate benign and malignant bone lesions using routine magnetic resonance imaging (MRI) and patient demographics. METHODS: 1,060 histologically confirmed bone lesions with T1- and T2-weighted pre-operative MRI were retrospectively identified and included, with lesions from 4 institutions used for model development and internal validation, and data from a fifth institution used for external validation. Image-based models were generated using the EfficientNet-B0 architecture and a logistic regression model was trained using patient age, sex, and lesion location. A voting ensemble was created as the final model. The performance of the model was compared to classification performance by radiology experts. FINDINGS: The cohort had a mean age of 30±23 years and was 58.3% male, with 582 benign lesions and 478 malignant. Compared to a contrived expert committee result, the ensemble deep learning model achieved (ensemble vs. experts): similar accuracy (0·76 vs. 0·73, p=0·7), sensitivity (0·79 vs. 0·81, p=1·0) and specificity (0·75 vs. 0·66, p=0·48), with a ROC AUC of 0·82. On external testing, the model achieved ROC AUC of 0·79. INTERPRETATION: Deep learning can be used to distinguish benign and malignant bone lesions on par with experts. These findings could aid in the development of computer-aided diagnostic tools to reduce unnecessary referrals to specialized centers from community clinics and limit unnecessary biopsies. FUNDING: This work was funded by a Radiological Society of North America Research Medical Student Grant (#RMS2013) and supported by the Amazon Web Services Diagnostic Development Initiative.


Asunto(s)
Neoplasias Óseas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Adolescente , Adulto , Neoplasias Óseas/patología , Niño , Aprendizaje Profundo , Diagnóstico por Computador , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven
12.
CNS Neurosci Ther ; 27(10): 1127-1135, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34132473

RESUMEN

AIMS: To determine if neurologic symptoms at admission can predict adverse outcomes in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: Electronic medical records of 1053 consecutively hospitalized patients with laboratory-confirmed infection of SARS-CoV-2 from one large medical center in the USA were retrospectively analyzed. Univariable and multivariable Cox regression analyses were performed with the calculation of areas under the curve (AUC) and concordance index (C-index). Patients were stratified into subgroups based on the presence of encephalopathy and its severity using survival statistics. In sensitivity analyses, patients with mild/moderate and severe encephalopathy (defined as coma) were separately considered. RESULTS: Of 1053 patients (mean age 52.4 years, 48.0% men [n = 505]), 35.1% (n = 370) had neurologic manifestations at admission, including 10.3% (n = 108) with encephalopathy. Encephalopathy was an independent predictor for death (hazard ratio [HR] 2.617, 95% confidence interval [CI] 1.481-4.625) in multivariable Cox regression. The addition of encephalopathy to multivariable models comprising other predictors for adverse outcomes increased AUCs (mortality: 0.84-0.86, ventilation/ intensive care unit [ICU]: 0.76-0.78) and C-index (mortality: 0.78 to 0.81, ventilation/ICU: 0.85-0.86). In sensitivity analyses, risk stratification survival curves for mortality and ventilation/ICU based on severe encephalopathy (n = 15) versus mild/moderate encephalopathy (n = 93) versus no encephalopathy (n = 945) at admission were discriminative (p < 0.001). CONCLUSIONS: Encephalopathy at admission predicts later progression to death in SARS-CoV-2 infection, which may have important implications for risk stratification in clinical practice.


Asunto(s)
Encefalopatías/diagnóstico , Encefalopatías/mortalidad , COVID-19/diagnóstico , COVID-19/mortalidad , Admisión del Paciente/tendencias , Adulto , Anciano , Encefalopatías/terapia , COVID-19/terapia , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Retrospectivos
14.
Lancet Digit Health ; 3(5): e286-e294, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33773969

RESUMEN

BACKGROUND: Chest x-ray is a relatively accessible, inexpensive, fast imaging modality that might be valuable in the prognostication of patients with COVID-19. We aimed to develop and evaluate an artificial intelligence system using chest x-rays and clinical data to predict disease severity and progression in patients with COVID-19. METHODS: We did a retrospective study in multiple hospitals in the University of Pennsylvania Health System in Philadelphia, PA, USA, and Brown University affiliated hospitals in Providence, RI, USA. Patients who presented to a hospital in the University of Pennsylvania Health System via the emergency department, with a diagnosis of COVID-19 confirmed by RT-PCR and with an available chest x-ray from their initial presentation or admission, were retrospectively identified and randomly divided into training, validation, and test sets (7:1:2). Using the chest x-rays as input to an EfficientNet deep neural network and clinical data, models were trained to predict the binary outcome of disease severity (ie, critical or non-critical). The deep-learning features extracted from the model and clinical data were used to build time-to-event models to predict the risk of disease progression. The models were externally tested on patients who presented to an independent multicentre institution, Brown University affiliated hospitals, and compared with severity scores provided by radiologists. FINDINGS: 1834 patients who presented via the University of Pennsylvania Health System between March 9 and July 20, 2020, were identified and assigned to the model training (n=1285), validation (n=183), or testing (n=366) sets. 475 patients who presented via the Brown University affiliated hospitals between March 1 and July 18, 2020, were identified for external testing of the models. When chest x-rays were added to clinical data for severity prediction, area under the receiver operating characteristic curve (ROC-AUC) increased from 0·821 (95% CI 0·796-0·828) to 0·846 (0·815-0·852; p<0·0001) on internal testing and 0·731 (0·712-0·738) to 0·792 (0·780-0 ·803; p<0·0001) on external testing. When deep-learning features were added to clinical data for progression prediction, the concordance index (C-index) increased from 0·769 (0·755-0·786) to 0·805 (0·800-0·820; p<0·0001) on internal testing and 0·707 (0·695-0·729) to 0·752 (0·739-0·764; p<0·0001) on external testing. The image and clinical data combined model had significantly better prognostic performance than combined severity scores and clinical data on internal testing (C-index 0·805 vs 0·781; p=0·0002) and external testing (C-index 0·752 vs 0·715; p<0·0001). INTERPRETATION: In patients with COVID-19, artificial intelligence based on chest x-rays had better prognostic performance than clinical data or radiologist-derived severity scores. Using artificial intelligence, chest x-rays can augment clinical data in predicting the risk of progression to critical illness in patients with COVID-19. FUNDING: Brown University, Amazon Web Services Diagnostic Development Initiative, Radiological Society of North America, National Cancer Institute and National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health.


Asunto(s)
Inteligencia Artificial , COVID-19/fisiopatología , Pronóstico , Radiografía Torácica , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X , Estados Unidos , Adulto Joven
15.
Korean J Radiol ; 22(7): 1213-1224, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33739635

RESUMEN

OBJECTIVE: To develop a machine learning (ML) pipeline based on radiomics to predict Coronavirus Disease 2019 (COVID-19) severity and the future deterioration to critical illness using CT and clinical variables. MATERIALS AND METHODS: Clinical data were collected from 981 patients from a multi-institutional international cohort with real-time polymerase chain reaction-confirmed COVID-19. Radiomics features were extracted from chest CT of the patients. The data of the cohort were randomly divided into training, validation, and test sets using a 7:1:2 ratio. A ML pipeline consisting of a model to predict severity and time-to-event model to predict progression to critical illness were trained on radiomics features and clinical variables. The receiver operating characteristic area under the curve (ROC-AUC), concordance index (C-index), and time-dependent ROC-AUC were calculated to determine model performance, which was compared with consensus CT severity scores obtained by visual interpretation by radiologists. RESULTS: Among 981 patients with confirmed COVID-19, 274 patients developed critical illness. Radiomics features and clinical variables resulted in the best performance for the prediction of disease severity with a highest test ROC-AUC of 0.76 compared with 0.70 (0.76 vs. 0.70, p = 0.023) for visual CT severity score and clinical variables. The progression prediction model achieved a test C-index of 0.868 when it was based on the combination of CT radiomics and clinical variables compared with 0.767 when based on CT radiomics features alone (p < 0.001), 0.847 when based on clinical variables alone (p = 0.110), and 0.860 when based on the combination of visual CT severity scores and clinical variables (p = 0.549). Furthermore, the model based on the combination of CT radiomics and clinical variables achieved time-dependent ROC-AUCs of 0.897, 0.933, and 0.927 for the prediction of progression risks at 3, 5 and 7 days, respectively. CONCLUSION: CT radiomics features combined with clinical variables were predictive of COVID-19 severity and progression to critical illness with fairly high accuracy.


Asunto(s)
COVID-19/diagnóstico , Aprendizaje Automático , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X/métodos , Enfermedad Crítica , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Estudios Retrospectivos , SARS-CoV-2/patogenicidad
16.
Radiology ; 296(3): E156-E165, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32339081

RESUMEN

Background Coronavirus disease 2019 (COVID-19) and pneumonia of other diseases share similar CT characteristics, which contributes to the challenges in differentiating them with high accuracy. Purpose To establish and evaluate an artificial intelligence (AI) system for differentiating COVID-19 and other pneumonia at chest CT and assessing radiologist performance without and with AI assistance. Materials and Methods A total of 521 patients with positive reverse transcription polymerase chain reaction results for COVID-19 and abnormal chest CT findings were retrospectively identified from 10 hospitals from January 2020 to April 2020. A total of 665 patients with non-COVID-19 pneumonia and definite evidence of pneumonia at chest CT were retrospectively selected from three hospitals between 2017 and 2019. To classify COVID-19 versus other pneumonia for each patient, abnormal CT slices were input into the EfficientNet B4 deep neural network architecture after lung segmentation, followed by a two-layer fully connected neural network to pool slices together. The final cohort of 1186 patients (132 583 CT slices) was divided into training, validation, and test sets in a 7:2:1 and equal ratio. Independent testing was performed by evaluating model performance in separate hospitals. Studies were blindly reviewed by six radiologists without and then with AI assistance. Results The final model achieved a test accuracy of 96% (95% confidence interval [CI]: 90%, 98%), a sensitivity of 95% (95% CI: 83%, 100%), and a specificity of 96% (95% CI: 88%, 99%) with area under the receiver operating characteristic curve of 0.95 and area under the precision-recall curve of 0.90. On independent testing, this model achieved an accuracy of 87% (95% CI: 82%, 90%), a sensitivity of 89% (95% CI: 81%, 94%), and a specificity of 86% (95% CI: 80%, 90%) with area under the receiver operating characteristic curve of 0.90 and area under the precision-recall curve of 0.87. Assisted by the probabilities of the model, the radiologists achieved a higher average test accuracy (90% vs 85%, Δ = 5, P < .001), sensitivity (88% vs 79%, Δ = 9, P < .001), and specificity (91% vs 88%, Δ = 3, P = .001). Conclusion Artificial intelligence assistance improved radiologists' performance in distinguishing coronavirus disease 2019 pneumonia from non-coronavirus disease 2019 pneumonia at chest CT. © RSNA, 2020 Online supplemental material is available for this article.


Asunto(s)
Inteligencia Artificial , Infecciones por Coronavirus/diagnóstico por imagen , Neumonía Viral/diagnóstico por imagen , Radiólogos , Tomografía Computarizada por Rayos X/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Betacoronavirus , COVID-19 , Niño , Preescolar , China , Diagnóstico Diferencial , Femenino , Humanos , Lactante , Recién Nacido , Pulmón/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Pandemias , Philadelphia , Neumonía/diagnóstico por imagen , Radiografía Torácica , Radiólogos/normas , Radiólogos/estadística & datos numéricos , Estudios Retrospectivos , Rhode Island , SARS-CoV-2 , Sensibilidad y Especificidad , Adulto Joven
17.
Radiology ; 296(2): E46-E54, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32155105

RESUMEN

Background Despite its high sensitivity in diagnosing coronavirus disease 2019 (COVID-19) in a screening population, the chest CT appearance of COVID-19 pneumonia is thought to be nonspecific. Purpose To assess the performance of radiologists in the United States and China in differentiating COVID-19 from viral pneumonia at chest CT. Materials and Methods In this study, 219 patients with positive COVID-19, as determined with reverse-transcription polymerase chain reaction (RT-PCR) and abnormal chest CT findings, were retrospectively identified from seven Chinese hospitals in Hunan Province, China, from January 6 to February 20, 2020. Two hundred five patients with positive respiratory pathogen panel results for viral pneumonia and CT findings consistent with or highly suspicious for pneumonia, according to original radiologic interpretation within 7 days of each other, were identified from Rhode Island Hospital in Providence, RI. Three radiologists from China reviewed all chest CT scans (n = 424) blinded to RT-PCR findings to differentiate COVID-19 from viral pneumonia. A sample of 58 age-matched patients was randomly selected and evaluated by four radiologists from the United States in a similar fashion. Different CT features were recorded and compared between the two groups. Results For all chest CT scans (n = 424), the accuracy of the three radiologists from China in differentiating COVID-19 from non-COVID-19 viral pneumonia was 83% (350 of 424), 80% (338 of 424), and 60% (255 of 424). In the randomly selected sample (n = 58), the sensitivities of three radiologists from China and four radiologists from the United States were 80%, 67%, 97%, 93%, 83%, 73%, and 70%, respectively. The corresponding specificities of the same readers were 100%, 93%, 7%, 100%, 93%, 93%, and 100%, respectively. Compared with non-COVID-19 pneumonia, COVID-19 pneumonia was more likely to have a peripheral distribution (80% vs 57%, P < .001), ground-glass opacity (91% vs 68%, P < .001), fine reticular opacity (56% vs 22%, P < .001), and vascular thickening (59% vs 22%, P < .001), but it was less likely to have a central and peripheral distribution (14% vs 35%, P < .001), pleural effusion (4% vs 39%, P < .001), or lymphadenopathy (3% vs 10%, P = .002). Conclusion Radiologists in China and in the United States distinguished coronavirus disease 2019 from viral pneumonia at chest CT with moderate to high accuracy. © RSNA, 2020 Online supplemental material is available for this article. A translation of this abstract in Farsi is available in the supplement. ترجمه چکیده این مقاله به فارسی، در ضمیمه موجود است.


Asunto(s)
Betacoronavirus , Competencia Clínica , Infecciones por Coronavirus/diagnóstico por imagen , Neumonía Viral/diagnóstico por imagen , Radiólogos/normas , Adulto , Anciano , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/patología , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/patología , Neumonía Viral/virología , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X/métodos
18.
Brain Imaging Behav ; 14(5): 1964-1978, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31264197

RESUMEN

Radiation encephalopathy (RE) is a common complication in patients with nasopharyngeal carcinoma (NPC) who have received radiotherapy (RT), and recent neuroimaging studies have shown brain alterations in Post-RT patients prior to RE. However, whether there are functional alterations between those Post-RT patients who are proved to have RE in follow-up and those who do not develop it remains largely unknown. Here, we used resting state functional MRI to explore regional homogeneity (ReHo) and functional connectivity (FC) alterations in Post-RT patients with (Post-RT RE proved; n = 18) or without (Post-RT non-RE; n = 22) RE at follow-up, also making comparisons with a Pre-RT group (n = 23). Compared with the Pre-RT group, patients in Post-RT non-RE and Post-RT RE proved groups showed concurrent increased and decreased ReHo values in different brain regions inside and/or outside the radiation field, with the alterations in ReHo tending to increase if RE occurred. Seed-based FC analysis showed that compared with the Post-RT non-RE group, patients in the Post-RT RE proved group had different changing patterns of FC between a region of interest (ROI) in the right temporal lobe and distant brain regions (mainly in the sensorimotor system and default mode network). Receiver operating characteristic (ROC) curve analysis showed that the altered ReHo value in the ROI had excellent diagnostic performance for differentiating NPC patients who developed RE in follow-up from those who did not, with an area under the curve (AUC) value of 0.94. These ReHo and FC findings may provide new insights into the early diagnosis of RE.


Asunto(s)
Encefalopatías/etiología , Encéfalo/patología , Encéfalo/fisiopatología , Carcinoma Nasofaríngeo/fisiopatología , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/fisiopatología , Neoplasias Nasofaríngeas/radioterapia , Adulto , Encéfalo/diagnóstico por imagen , Encefalopatías/diagnóstico por imagen , Encefalopatías/patología , Encefalopatías/fisiopatología , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Carcinoma Nasofaríngeo/diagnóstico por imagen , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/diagnóstico por imagen , Neoplasias Nasofaríngeas/patología
19.
Curr Med Sci ; 39(3): 396-402, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31209809

RESUMEN

This study aimed to examine the prognostic factors of luminal B-like breast cancer. Clinical data of 695 luminal B-like breast cancer patients who had been treated in our hospital during the period of past 4.5 years were collected and analyzed. Estrogen receptor (ER), progesterone receptor (PgR), antigen identified by monoclonal antibody Ki-67 (Ki67) were immunohistochemically detected. Different cutoffs of ER, PgR, and Ki67 were evaluated. Pearson χ2 test was performed to compare categorical parameters. Univariate and multivariate models were used to evaluate predictors of disease free survival (DFS). The results showed that patients who were younger, and had larger tumors, and more positive lymph nodes were more likely to receive neo-adjuvent chemotherapy (NAC). Patients with ER-positive tumors having <10% positive cells received more anthracycline- and taxane-based chemotherapy and less endocrine therapy than those with ER-positive tumors having ≥10% positive cells (P=0.004 and P=0.007, respectively); however, patients with ER-positive tumors having <10% positive cells experienced more recurrence (P<0.001). PgR expression levels were not associated with therapeutic schedule and DFS. Patients with tumor tissue Ki67 score ≥30% received more anthracycline- and taxane-based chemotherapy and had worse DFS than those with tumor tissue Ki67 score <30%. Univariate and multivariate analysis showed that clinical T stage, lymph nodes, ER, Ki67, and HER2 status were independent prognostic factors. In conclusion, ER-positive rate <10% and Ki67 score ≥30%, similar to higher clinical T stage, more metastatic lymph nodes, and HER2 positive status, may indicate a worse prognosis for luminal B-like breast cancer patients. Multi-center prospective trials with larger sample sizes are necessary for the continued perfection of our work.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/diagnóstico , Antígeno Ki-67/genética , Recurrencia Local de Neoplasia/diagnóstico , Receptor ErbB-2/genética , Receptores de Estrógenos/genética , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/cirugía , Femenino , Expresión Génica , Humanos , Metástasis Linfática , Persona de Mediana Edad , Análisis Multivariante , Clasificación del Tumor , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/cirugía , Estadificación de Neoplasias , Pronóstico , Receptores de Progesterona/genética , Estudios Retrospectivos , Análisis de Supervivencia
20.
Cancer Biother Radiopharm ; 34(2): 76-84, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30585765

RESUMEN

OBJECTIVE: To predict the early identification of recurrence based on magnetic resonance imaging (MRI) in nasopharyngeal cancer (NPC) patients. METHODS: The clinical and MRI data of 215 patients with local recurrent NPC were retrospectively reviewed. Logistic regression analysis was performed to distinguish the independent risk factors for the short-term (less than 24 months) local recurrence of NPC. The predictive score model was based on the regression coefficients of significant independent variables. RESULTS: Residual disease in the nasopharyngeal cavity (NC), masticator space invasion (MSI), skull base bone erosion (SBBE), and MRI-detected cranial nerve invasion (MDCNI) were all significant independent risk factors for the short-term recurrence of NPC (p < 0.05). The receiver operating characteristic curve showed that the total score had a maximal AUC (area under the curve) value of 0.897, with a cutoff point of 10.50. The sensitivity and specificity were 79.4% and 80.5%, respectively. CONCLUSION: Residual lesions in NC, MSI, SBBE, and MDCNI are independent risk factors in predicting the short-term recurrence of NPC. The authors' findings suggest that patients with a score of more than 10.50 points should be hypervigilant regarding the possibility of short-term recurrence.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Carcinoma Nasofaríngeo/diagnóstico por imagen , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Carcinoma Nasofaríngeo/patología , Recurrencia Local de Neoplasia , Estudios Retrospectivos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA