Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38947072

RESUMEN

Background: Persisting HIV reservoir viruses in resting CD4 T cells and other cellular subsets are the main barrier to cure efforts. Antiretroviral therapy (ART) intensification by early initiation has been shown to enable post-treatment viral control in some cases but the underlying mechanisms are not fully understood. We hypothesized that ART initiated during the hyperacute phase of infection before peak will affect the size, decay dynamics and landscape characteristics of HIV-1 subtype C viral reservoirs. Methods: We studied 35 women at high risk of infection from Durban, South Africa identified with hyperacute HIV infection by twice weekly testing for plasma HIV-1 RNA. Study participants included 11 who started ART at a median of 456 (297-1203) days post onset of viremia (DPOV), and 24 who started ART at a median of 1 (1-3) DPOV. We used peripheral blood mononuclear cells (PBMC) to measure total HIV-1 DNA by ddPCR and to sequence reservoir viral genomes by full length individual proviral sequencing (FLIP-seq) from onset of detection of HIV up to 1 year post treatment initiation. Results: Whereas ART in hyperacute infection blunted peak viremia compared to untreated individuals (p<0.0001), there was no difference in total HIV-1 DNA measured contemporaneously (p=0.104). There was a steady decline of total HIV DNA in early treated persons over 1 year of ART (p=0.0004), with no significant change observed in the late treated group. Total HIV-1 DNA after one year of treatment was lower in the early treated compared to the late treated group (p=0.02). Generation of 697 single viral genome sequences revealed a difference in the longitudinal proviral genetic landscape over one year between untreated, late treated, and early treated infection: the relative contribution of intact genomes to the total pool of HIV-1 DNA after 1 year was higher in untreated infection (31%) compared to late treated (14%) and early treated infection (0%). Treatment initiated in both late and early infection resulted in a more rapid decay of intact (13% and 51% per month) versus defective (2% and 35% per month) viral genomes. However, intact genomes were still observed one year post chronic treatment initiation in contrast to early treatment where intact genomes were no longer detectable. Moreover, early ART reduced phylogenetic diversity of intact genomes and limited the seeding and persistence of cytotoxic T lymphocyte immune escape variants in the reservoir. Conclusions: Overall, our results show that whereas ART initiated in hyperacute HIV-1 subtype C infection did not impact reservoir seeding, it was nevertheless associated with more rapid decay of intact viral genomes, decreased genetic complexity and immune escape in reservoirs, which could accelerate reservoir clearance when combined with other interventional strategies.

2.
JCI Insight ; 9(16)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980725

RESUMEN

BACKGROUNDWe evaluated the safety and viral rebound, after analytical treatment interruption (ATI), of vedolizumab and ART in recent HIV-1 infection. We used this model to analyze the effect of α4ß7 on the HIV-1 reservoir size.METHODSParticipants started ART with monthly vedolizumab infusions, and ATI was performed at week 24. Biopsies were obtained from ileum and cecum at baseline and week 24. Vedolizumab levels, HIV-1 reservoir, flow cytometry, and cell-sorting and antibody competition experiments were assayed.RESULTSVedolizumab was safe and well tolerated. No participant achieved undetectable viremia off ART 24 weeks after ATI. Only a modest effect on the time to achieve more than 1,000 HIV-1 RNA copies/mL and the proportion of participants off ART was observed, being higher in the vedolizumab group compared with historical controls. Just before ATI, α4ß7 expression was associated with HIV-1 DNA and RNA in peripheral blood and with PD1 and TIGIT levels. Importantly, a complete blocking of α4ß7 was observed on peripheral CD4+ T cells but not in gut (ileum and cecum), where α4ß7 blockade and vedolizumab levels were inversely associated with HIV-1 DNA.CONCLUSIONOur findings support α4ß7 as an important determinant in HIV-1 reservoir size, suggesting the complete α4ß7 blockade in tissue as a promising tool for HIV-cure combination strategies.TRIAL REGISTRATIONClinicalTrials.gov NCT03577782.FUNDINGThis work was supported by the Instituto de Salud Carlos III (Fondo Europeo de Desarrollo Regional, "a way to make Europe," research contracts FI17/00186 and FI19/00083 and research projects PI18/01532, PI19/01127, PI22/01796), Conserjería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía (research projects P20/00906), the Red Temática de Investigación Cooperativa en SIDA (RD16/0025/0020), and the Spanish National Research Council.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Infecciones por VIH , VIH-1 , Carga Viral , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fármacos Anti-VIH/uso terapéutico , Fármacos Anti-VIH/administración & dosificación , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Linfocitos T CD4-Positivos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Íleon/metabolismo , Íleon/virología , Integrinas/metabolismo , ARN Viral/sangre , Carga Viral/efectos de los fármacos
3.
Lancet HIV ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39059402

RESUMEN

Analytical treatment interruption (ATI) is widely acknowledged as an essential component of studies to advance our understanding of HIV cure, but discussion has largely been focused on adults. To address this gap, we reviewed evidence related to the safety and utility of ATI in paediatric populations. Three randomised ATI trials using CD4 T-cell and clinical criteria to guide restart of antiretroviral therapy (ART) have been conducted. These trials found low risks associated with ATI in children, including reassuring findings pertaining to neurocognitive outcomes. Similar to adults treated during acute infection, infants treated early in life have shifts in virological and immunological parameters that increase their likelihood of achieving ART-free viral control. Early ART limits the size and diversity of the viral reservoir and shapes effective innate and HIV-specific humoral and cellular responses. Several cases of durable ART-free viral control in early treated children have been reported. We recommend that, where appropriate for the study question and where adequate monitoring is available, ATI should be integrated into ART-free viral control research in children living with HIV. Paediatric participants have the greatest likelihood of benefiting and potentially the most years to prospectively realise those benefits. Excluding children from ATI trials limits the evidence base and delays access to interventions.

4.
Nat Med ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843818

RESUMEN

After sporadic reports of post-treatment control of HIV in children who initiated combination anti-retroviral therapy (cART) early, we prospectively studied 284 very-early-cART-treated children from KwaZulu-Natal, South Africa, after vertical HIV transmission to assess control of viremia. Eighty-four percent of the children achieved aviremia on cART, but aviremia persisting to 36 or more months was observed in only 32%. We observed that male infants have lower baseline plasma viral loads (P = 0.01). Unexpectedly, a subset (n = 5) of males maintained aviremia despite unscheduled complete discontinuation of cART lasting 3-10 months (n = 4) or intermittent cART adherence during 17-month loss to follow-up (n = 1). We further observed, in vertically transmitted viruses, a negative correlation between type I interferon (IFN-I) resistance and viral replication capacity (VRC) (P < 0.0001) that was markedly stronger for males than for females (r = -0.51 versus r = -0.07 for IFN-α). Although viruses transmitted to male fetuses were more IFN-I sensitive and of higher VRC than those transmitted to females in the full cohort (P < 0.0001 and P = 0.0003, respectively), the viruses transmitted to the five males maintaining cART-free aviremia had significantly lower replication capacity (P < 0.0001). These data suggest that viremic control can occur in some infants with in utero-acquired HIV infection after early cART initiation and may be associated with innate immune sex differences.

5.
Curr Opin HIV AIDS ; 19(3): 110-115, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38457193

RESUMEN

PURPOSE OF REVIEW: Elite controllers (ECs) and Posttreatment controllers (PTCs) represent a small subset of individuals who are capable of maintaining drug-free control of HIV plasma viral loads despite the persistence of a replication-competent viral reservoir. This review aims to curate recent experimental studies evaluating viral reservoirs that distinguish EC/PTC and may contribute to their ability to maintain undetectable viral loads in the absence of antiretroviral therapy. RECENT FINDINGS: Recent studies on ECs have demonstrated that integration sites of intact proviruses in EC/PTC are markedly biased towards heterochromatin regions; in contrast, intact proviruses in accessible and permissive chromatin were profoundly underrepresented. Of note, no such biases were noted when CD4 + T cells from EC were infected directly ex vivo, suggesting that the viral reservoir profile in EC is not related to altered integration site preferences during acute infection, but instead represents the result of immune-mediated selection mechanisms that can eliminate proviruses in transcriptionally-active euchromatin regions while promoting preferential persistence of intact proviruses in nonpermissive genome regions. Proviral transcription in such "blocked and locked" regions may be restricted through epigenetic mechanisms, protecting them from immune-recognition but presumably limiting their ability to drive viral rebound. While the exact immune mechanisms driving this selection process remain undefined, recent single-cell analytic approaches support the hypothesis that HIV reservoir cells are subject to immune selection pressure by host factors. SUMMARY: A "blocked and locked" viral reservoir profile may constitute a structural virological correlate of a functional cure of HIV-1 infection. Further research into the immunological mechanism promoting HIV-1 reservoir selection and evolution in EC/PTC is warranted and could inform foreseeable cure strategies.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/genética , Provirus/genética , Replicación Viral , Linfocitos T CD4-Positivos , Integración Viral , Carga Viral , Latencia del Virus
6.
Cell ; 187(5): 1238-1254.e14, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38367616

RESUMEN

CD4+ T cells with latent HIV-1 infection persist despite treatment with antiretroviral agents and represent the main barrier to a cure of HIV-1 infection. Pharmacological disruption of viral latency may expose HIV-1-infected cells to host immune activity, but the clinical efficacy of latency-reversing agents for reducing HIV-1 persistence remains to be proven. Here, we show in a randomized-controlled human clinical trial that the histone deacetylase inhibitor panobinostat, when administered in combination with pegylated interferon-α2a, induces a structural transformation of the HIV-1 reservoir cell pool, characterized by a disproportionate overrepresentation of HIV-1 proviruses integrated in ZNF genes and in chromatin regions with reduced H3K27ac marks, the molecular target sites for panobinostat. By contrast, proviruses near H3K27ac marks were actively selected against, likely due to increased susceptibility to panobinostat. These data suggest that latency-reversing treatment can increase the immunological vulnerability of HIV-1 reservoir cells and accelerate the selection of epigenetically privileged HIV-1 proviruses.


Asunto(s)
Infecciones por VIH , VIH-1 , Inhibidores de Histona Desacetilasas , Interferón-alfa , Panobinostat , Provirus , Humanos , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Panobinostat/uso terapéutico , Provirus/efectos de los fármacos , Latencia del Virus , Inhibidores de Histona Desacetilasas/uso terapéutico , Interferón-alfa/uso terapéutico
7.
J Clin Invest ; 134(8)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376918

RESUMEN

BACKGROUNDPersistent controllers (PCs) maintain antiretroviral-free HIV-1 control indefinitely over time, while transient controllers (TCs) eventually lose virological control. It is essential to characterize the quality of the HIV reservoir in terms of these phenotypes in order to identify the factors that lead to HIV progression and to open new avenues toward an HIV cure.METHODSThe characterization of HIV-1 reservoir from peripheral blood mononuclear cells was performed using next-generation sequencing techniques, such as full-length individual and matched integration site proviral sequencing (FLIP-Seq; MIP-Seq).RESULTSPCs and TCs, before losing virological control, presented significantly lower total, intact, and defective proviruses compared with those of participants on antiretroviral therapy (ART). No differences were found in total and defective proviruses between PCs and TCs. However, intact provirus levels were lower in PCs compared with TCs; indeed the intact/defective HIV-DNA ratio was significantly higher in TCs. Clonally expanded intact proviruses were found only in PCs and located in centromeric satellite DNA or zinc-finger genes, both associated with heterochromatin features. In contrast, sampled intact proviruses were located in permissive genic euchromatic positions in TCs.CONCLUSIONSThese results suggest the need for, and can give guidance to, the design of future research to identify a distinct proviral landscape that may be associated with the persistent control of HIV-1 without ART.FUNDINGInstituto de Salud Carlos III (FI17/00186, FI19/00083, MV20/00057, PI18/01532, PI19/01127 and PI22/01796), Gilead Fellowships (GLD22/00147). NIH grants AI155171, AI116228, AI078799, HL134539, DA047034, MH134823, amfAR ARCHE and the Bill and Melinda Gates Foundation.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/genética , Leucocitos Mononucleares , Provirus/genética , Infecciones por VIH/tratamiento farmacológico , Antirretrovirales/uso terapéutico
8.
Nat Rev Microbiol ; 22(6): 328-344, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38337034

RESUMEN

Successful approaches for eradication or cure of HIV-1 infection are likely to include immunological mechanisms, but remarkably little is known about how human immune responses can recognize and interact with the few HIV-1-infected cells that harbour genome-intact viral DNA, persist long term despite antiretroviral therapy and represent the main barrier to a cure. For a long time regarded as being completely shielded from host immune responses due to viral latency, these cells do, on closer examination with single-cell analytic techniques, display discrete footprints of immune selection, implying that human immune responses may be able to effectively engage and target at least some of these cells. The failure to eliminate rebound-competent virally infected cells in the majority of persons likely reflects the evolution of a highly selected pool of reservoir cells that are effectively camouflaged from immune recognition or rely on sophisticated approaches for resisting immune-mediated killing. Understanding the fine-tuned interplay between host immune responses and viral reservoir cells will help to design improved interventions that exploit the immunological vulnerabilities of HIV-1 reservoir cells.


Asunto(s)
Infecciones por VIH , VIH-1 , Latencia del Virus , VIH-1/inmunología , VIH-1/fisiología , Humanos , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Infecciones por VIH/tratamiento farmacológico , Latencia del Virus/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología
9.
J Exp Med ; 221(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38345557

RESUMEN

Proliferation of HIV-1-infected cells contributes to viral persistence despite antiretroviral therapy. A new study by Kufera et al. (https://doi.org/10.1084/jem.20231511) demonstrates that proliferative growth of cells infected with genome-intact HIV-1 is not limitless; rather, these cells seem to be at least partially refractory to TCR stimulation, restricting their ability to proliferate in response to antigenic challenge.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Linfocitos T CD4-Positivos , Deluciones , Proliferación Celular , Replicación Viral
10.
Pathog Immun ; 8(2): 115-157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38455668

RESUMEN

Once a death sentence, HIV is now considered a manageable chronic disease due to the development of antiretroviral therapy (ART) regimens with minimal toxicity and a high barrier for genetic resistance. While highly effective in arresting AIDS progression and rendering the virus untransmissible in people living with HIV (PLWH) with undetectable viremia (U=U) [1, 2]), ART alone is incapable of eradicating the "reservoir" of resting, latently infected CD4+ T cells from which virus recrudesces upon treatment cessation. As of 2022 estimates, there are 39 million PLWH, of whom 86% are aware of their status and 76% are receiving ART [3]. As of 2017, ART-treated PLWH exhibit near normalized life expectancies without adjustment for socioeconomic differences [4]. Furthermore, there is a global deceleration in the rate of new infections [3] driven by expanded access to pre-exposure prophylaxis (PrEP), HIV testing in vulnerable populations, and by ART treatment [5]. Therefore, despite outstanding issues pertaining to cost and access in developing countries, there is strong enthusiasm that aggressive testing, treatment, and effective viral suppression may be able to halt the ongoing HIV epidemic (ie, UNAIDS' 95-95-95 targets) [6-8]; especially as evidenced by recent encouraging observations in Sydney [9]. Despite these promising efforts to limit further viral transmission, for PLWH, a "cure" remains elusive; whether it be to completely eradicate the viral reservoir (ie, cure) or to induce long-term viral remission in the absence of ART (ie, control; Figure 1). In a previous salon hosted by Pathogens and Immunity in 2016 [10], some researchers were optimistic that a cure was a feasible, scalable goal, albeit with no clear consensus on the best route. So, how are these cure strategies panning out? In this commentary, 8 years later, we will provide a brief overview on recent advances and failures towards identifying determinants of viral persistence and developing a scalable cure for HIV. Based on these observations, and as in the earlier salon, we have asked several prominent HIV cure researchers for their perspectives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...