Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Microb Physiol ; 84: 1-49, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38821631

RESUMEN

In terrestrial and aquatic ecosystems, phosphorus (P) availability controls primary production, with consequences for climate regulation and global food security. Understanding the microbial controls on the global P cycle is a prerequisite for minimising our reliance on non-renewable phosphate rock reserves and reducing pollution associated with excessive P fertiliser use. This recognised importance has reinvigorated research into microbial P cycling, which was pioneered over 75 years ago through the study of human pathogenic bacteria-host interactions. Immobilised organic P represents a significant fraction of the total P pool. Hence, microbes have evolved a plethora of mechanisms to transform this fraction into labile inorganic phosphate, the building block for numerous biological molecules. The 'genomics era' has revealed an extraordinary diversity of organic P cycling genes exist in the environment and studies going 'back to the lab' are determining how this diversity relates to function. Through this integrated approach, many hitherto unknown genes and proteins that are involved in microbial P cycling have been discovered. Not only do these fundamental discoveries push the frontier of our knowledge, but several examples also provide exciting opportunities for biotechnology and present possible solutions for improving the sustainability of how we grow our food, both locally and globally. In this review, we provide a comprehensive overview of bacterial organic P cycling, covering studies on human pathogens and how this knowledge is informing new discoveries in environmental microbiology.


Asunto(s)
Bacterias , Bacterias/metabolismo , Bacterias/genética , Humanos , Fósforo/metabolismo , Ecosistema , Microbiología Ambiental , Compuestos Organofosforados/metabolismo , Fosfatos/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(20): e2312892121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713622

RESUMEN

Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus, the two most abundant phototrophs on Earth, thrive in oligotrophic oceanic regions. While it is well known that specific lineages are exquisitely adapted to prevailing in situ light and temperature regimes, much less is known of the molecular machinery required to facilitate occupancy of these low-nutrient environments. Here, we describe a hitherto unknown alkaline phosphatase, Psip1, that has a substantially higher affinity for phosphomonoesters than other well-known phosphatases like PhoA, PhoX, or PhoD and is restricted to clade III Synechococcus and a subset of high light I-adapted Prochlorococcus strains, suggesting niche specificity. We demonstrate that Psip1 has undergone convergent evolution with PhoX, requiring both iron and calcium for activity and likely possessing identical key residues around the active site, despite generally very low sequence homology. Interrogation of metagenomes and transcriptomes from TARA oceans and an Atlantic Meridional transect shows that psip1 is abundant and highly expressed in picocyanobacterial populations from the Mediterranean Sea and north Atlantic gyre, regions well recognized to be phosphorus (P)-deplete. Together, this identifies psip1 as an important oligotrophy-specific gene for P recycling in these organisms. Furthermore, psip1 is not restricted to picocyanobacteria and is abundant and highly transcribed in some α-proteobacteria and eukaryotic algae, suggesting that such a high-affinity phosphatase is important across the microbial taxonomic world to occupy low-P environments.


Asunto(s)
Fosfatasa Alcalina , Prochlorococcus , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/genética , Prochlorococcus/genética , Prochlorococcus/metabolismo , Fósforo/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Synechococcus/genética , Synechococcus/metabolismo , Filogenia , Agua de Mar/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...