Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ther Hypothermia Temp Manag ; 14(1): 36-45, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37339459

RESUMEN

Therapeutic hypothermia (TH) mitigates damage in ischemic stroke models. However, safer and easier TH methods (e.g., pharmacological) are needed to circumvent physical cooling complications. This study evaluated systemic and pharmacologically induced TH using the adenosine A1 receptor agonist, N6-cyclohexyladenosine (CHA), with control groups in male Sprague-Dawley rats. CHA was administered intraperitoneally 10 minutes following a 2-hour intraluminal middle cerebral artery occlusion. We used a 1.5 mg/kg induction dose, followed by three 1.0 mg/kg doses every 6 hours for a total of 4 doses, causing 20-24 hours of hypothermia. Animals assigned to physical hypothermia and CHA-hypothermia had similar induction rates and nadir temperatures, but forced cooling lasted ∼6 hours longer compared with CHA-treated animals. The divergence is likely attributable to individual differences in CHA metabolism, which led to varied durations at nadir, whereas physical hypothermia was better regulated. Physical hypothermia significantly reduced infarction (primary endpoint) on day 7 (mean reduction of 36.8 mm3 or 39% reduction; p = 0.021 vs. normothermic animals; Cohen's d = 0.75), whereas CHA-induced hypothermia did not (p = 0.33). Similarly, physical cooling improved neurological function (physical hypothermia median = 0, physical normothermia median = 2; p = 0.008) and CHA-induced cooling did not (p > 0.99). Our findings demonstrate that forced cooling was neuroprotective compared with controls, but prolonged CHA-induced cooling was not neuroprotective.


Asunto(s)
Adenosina/análogos & derivados , Hipotermia Inducida , Hipotermia , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Animales , Masculino , Hipotermia Inducida/métodos , Hipotermia/metabolismo , Ratas Sprague-Dawley , Roedores , Accidente Cerebrovascular/terapia
2.
Transl Stroke Res ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37981635

RESUMEN

Few certainties exist regarding the optimal type, timing, or dosage of rehabilitation after stroke. Despite differing injury mechanisms and recovery patterns following ischemic and hemorrhagic stroke, most translational stroke research is conducted after ischemia. As we enter the era of personalized medicine, exploring subtype-specific treatment efficacy is essential to optimizing recovery. Our objective was to characterize common rehabilitation interventions used after in vivo preclinical intracerebral hemorrhage (ICH) and assess the impact of post-ICH rehabilitation (vs. no-rehabilitation) on recovery of motor function. Following PRISMA guidelines, a systematic review (Academic Search Complete, CINAHL, EMBASE, Medline, PubMed Central) identified eligible articles published up to December 2022. Risk of bias (SYRCLE) and study quality (CAMARADES) were evaluated, and random-effects meta-analysis was used to assess treatment efficacy in recovery of forelimb and locomotor functions. Thirty articles met inclusion criteria, and 48 rehabilitation intervention groups were identified. Most used collagenase to model striatal ICH in young, male rodents. Aerobic exercise, enriched rehabilitation, and constraint-induced movement therapy represented ~ 70% of interventions. Study quality was low (median 4/10, range 2-8), and risk of bias was unclear. Rehabilitation provided modest benefits in skilled reaching, spontaneous impaired forelimb use, and locomotor function; however, effects varied substantially by endpoint, treatment type, and study quality. Rehabilitation statistically improves motor function after preclinical ICH, but whether these effects are functionally meaningful is unclear. Incomplete reporting and variable research quality hinder our capacity to analyze and interpret how treatment factors influence rehabilitation efficacy and recovery after ICH.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37788401

RESUMEN

Decades of animal research show therapeutic hypothermia (TH) to be potently neuroprotective after cerebral ischemic injuries. While there have been some translational successes, clinical efficacy after ischemic stroke is unclear. One potential reason for translational failures could be insufficient optimization of dosing parameters. In this study, we conducted a systematic review of the PubMed database to identify all preclinical controlled studies that compared multiple TH durations following focal ischemia, with treatment beginning at least 1 hour after ischemic onset. Six studies met our inclusion criteria. In these six studies, six of seven experiments demonstrated an increase in cerebroprotection at the longest duration tested. The average effect size (mean Cohen's d ± 95% confidence interval) at the shortest and longest durations was 0.4 ± 0.3 and 1.9 ± 1.1, respectively. At the longest durations, this corresponded to percent infarct volume reductions between 31.2% and 83.9%. Our analysis counters previous meta-analytic findings that there is no relationship, or an inverse relationship between TH duration and effect size. However, underreporting often led to high or unclear risks of bias for each study as gauged by the SYRCLE Risk of Bias tool. We also found a lack of investigations of the interactions between duration and other treatment considerations (e.g., method, delay, and ischemic severity). With consideration of methodological limitations, an understanding of the relationships between treatment parameters is necessary to determine proper "dosage" of TH, and should be further studied, considering clinical failures that contrast with strong cerebroprotective results in most animal studies.

4.
PLoS One ; 18(9): e0292033, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37756302

RESUMEN

Intracerebral hemorrhage (ICH) is a devastating stroke with many mechanisms of injury. Edema worsens outcome and can lead to mortality after ICH. Glibenclamide (GLC), a sulfonylurea 1- transient receptor potential melastatin 4 (Sur1-Trpm4) channel blocker, has been shown to attenuate edema in ischemic stroke models, raising the possibility of benefit in ICH. This meta-analysis synthesizes current pre-clinical (rodent) literature regarding the efficacy of post-ICH GLC administration (vs. vehicle controls) on behaviour (i.e., neurological deficit, motor, and memory outcomes), edema, hematoma volume, and injury volume. Six studies (5 in rats and 1 in mice) were included in our meta-analysis (PROSPERO registration = CRD42021283614). GLC significantly improved behaviour (standardized mean difference (SMD) = -0.63, [-1.16, -0.09], n = 70-74) and reduced edema (SMD = -0.91, [-1.64, -0.18], n = 70), but did not affect hematoma volume (SMD = 0.0788, [-0.5631, 0.7207], n = 18-20), or injury volume (SMD = 0.2892, [-0.4950, 1.0734], n = 24). However, these results should be interpreted cautiously. Findings were conflicted with 2 negative and 4 positive reports, and Egger regressions indicated missing negative edema data (p = 0.0001), and possible missing negative behavioural data (p = 0.0766). Experimental quality assessed via the SYRCLE and CAMARADES checklists was concerning, as most studies demonstrated high risks of bias. Studies were generally low-powered (e.g., average n = 14.4 for behaviour), and future studies should employ sample sizes of 41 to detect our observed effect size in behaviour and 33 to detect our observed effect in edema. Overall, missing negative studies, low study quality, high risk of bias, and incomplete attention to key recommendations (e.g., investigating female, aged, and co-morbid animals) suggest that further high-powered confirmatory studies are needed before conclusive statements about GLC's efficacy in ICH can be made, and before further clinical trials are performed.

5.
Arch Rehabil Res Clin Transl ; 5(1): 100242, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36968167

RESUMEN

Objective: To evaluate the efficacy of upper cervical joint mobilization and/or manipulation on reducing pain and improving maximal mouth opening (MMO) and pressure pain thresholds (PPTs) in adults with temporomandibular joint (TMJ) dysfunction compared with sham or other intervention. Data Sources: MEDLINE, CINAHL, EMBASE, and Cochrane Library from inception to June 3, 2022, were searched. Study Selection: Eight randomized controlled trials with 437 participants evaluating manual therapy (MT) vs sham and MT vs other intervention were included. Two reviewers independently extracted data and assessed risk of bias. Data Extraction: Two independent reviewers extracted information about origin, number of study participants, eligibility criteria, type of intervention, and outcome measures. Data Synthesis: Manual therapy was statistically significant in reducing pain compared with sham (mean difference [MD]: -1.93 points, 95% confidence interval [CI]: -3.61 to -0.24, P=.03), and other intervention (MD: -1.03 points, 95% CI: -1.73 to -0.33, P=.004), improved MMO compared with sham (MD: 2.11 mm, 95% CI: 0.26 to 3.96, P=.03), and other intervention (MD: 2.25 mm, 95% CI: 1.01 to 3.48, P<.001), but not statistically significant in improving PPT of masseter compared with sham (MD: 0.45 kg/cm2, 95% CI: -0.21 to 1.11, P=.18), and other intervention (MD: 0.42 kg/cm2, 95% CI: -0.19 to 1.03, P=.18), or the PPT of temporalis compared with sham (MD: 0.37 kg/cm2, 95% CI: -0.03 to 0.77, P=.07), and other intervention (MD: 0.43 kg/cm2, 95% CI: -0.60 to 1.45, P=.42). Conclusion: There appears to be limited benefit of upper cervical spine MT on TMJ dysfunction, but definitive conclusions cannot be made because of heterogeneity and imprecision of treatment effects.

6.
Transl Stroke Res ; 14(2): 123-136, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35366212

RESUMEN

Intracerebral hemorrhage (ICH) accounts for 10-15% of all strokes and leaves most survivors with impairments. Fever, a rise in the thermoregulatory set point, complicates ICH. This review summarizes ICH fever studies and employs meta-analytic techniques to explore the relationship between fever and ICH. We discuss methodological considerations for future studies and provide an overview of mechanisms by which fever, and its treatment, may impact ICH. We searched the PubMed database using the following terms: ((fever OR hyperthermia) AND (intracerebral hemorrhage OR intraparenchymal hemorrhage OR intracerebral haemorrhage OR intraparenchymal haemorrhage)). Our search returned 727 studies, of which 21 were included in our final analysis, consisting of 19 clinical, and two preclinical, studies. We conducted a meta-analysis on the clinical data to quantify how fever is related to mortality, functional outcomes, and intraventricular hemorrhage. Analysis of clinical studies suggested that fever causes an increased risk of mortality but does not appear to be associated with poor outcomes among survivors, making it difficult to ascertain the extent of harm caused by post-ICH fever or the benefits of its treatment. Perhaps these inconsistencies stem from variable fever definitions, and temperature measurement and fever treatment protocols. Additionally, the lack of mechanistic data in clinical studies coupled with preclinical studies showing no harmful effects of moderate bouts of hyperthermia raise concerns about the direct contribution of hyperthermia and fever in post ICH outcome. Overall, the significance of temperature increases after ICH is unclear, making this an important area for future research.


Asunto(s)
Hemorragia Cerebral , Fiebre , Humanos , Fiebre/complicaciones , Temperatura Corporal
7.
J Neurochem ; 160(1): 128-144, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34496050

RESUMEN

Therapeutic hypothermia (TH) has applications dating back millennia. In modern history, however, TH saw its importation into medical practice where investigations have demonstrated that TH is efficacious in ischemic insults, notably cardiac arrest and hypoxic-ischemic encephalopathy. As well, studies have been undertaken to investigate whether TH can provide benefit in focal stroke (i.e., focal ischemia and intracerebral hemorrhage). However, clinical studies have encountered various challenges with induction and maintenance of post-stroke TH. Most clinical studies have attempted to use body-wide cooling protocols, commonly hindered by side effects that can worsen post-stroke outcomes. Some of the complications and difficulties with systemic TH can be circumvented by using local hypothermia (LH) methods. Additional advantages include the potential for lower target temperatures to be achieved and faster TH induction rates with LH. This systematic review summarizes the body of clinical and preclinical LH focal stroke studies and raises key points to consider for future LH research. We conclude with an overview of LH neuroprotective mechanisms and a comparison of LH mechanisms with those observed with systemic TH. Overall, whereas many LH studies have been conducted preclinically in the context of focal ischemia, insufficient work has been done in intracerebral hemorrhage. Furthermore, key translational studies have yet to be done in either stroke subtype (e.g., varied models and time-to-treat, studies considering aged animals or animals with co-morbidities). Few clinical LH investigations have been performed and the optimal LH parameters to achieve neuroprotection are unknown.


Asunto(s)
Hipotermia Inducida/métodos , Accidente Cerebrovascular/terapia , Animales , Humanos
8.
Transl Stroke Res ; 11(6): 1203-1213, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32504197

RESUMEN

One major aim of preclinical intracerebral hemorrhage (ICH) research is to develop and test potential neuroprotectants. Published guidelines for experimental design and reporting stress the importance of clearly and completely reporting results and methodological details to ensure reproducibility and maximize information availability. The current review has two objectives: first, to characterize current ICH neuroprotection research and, second, to analyze aspects of translational design in preclinical ICH studies. Translational design is the adoption and reporting of experimental design characteristics that are thought to be clinically relevant and critical to reproducibility in animal studies (e.g., conducting and reporting experiments according to the STAIR and ARRIVE guidelines, respectively). Given that ICH has no current neuroprotective treatments and an ongoing reproducibility crisis in preclinical research, translational design should be considered by investigators. We conducted a systematic review of ICH research from 2015 to 2019 using the PubMed database. Our search returned 281 published manuscripts studying putative neuroprotectants in animal models. Contemporary ICH research predominantly uses young, healthy male rodents. The collagenase model is the most commonly used. Reporting of group sizes, blinding, and randomization are almost unanimous, but group size calculations, mortality and exclusion criteria, and animal model characteristics are infrequently reported. Overall, current ICH neuroprotection research somewhat aligns with experimental design and reporting guidelines. However, there are areas for improvement. Because failure to consider translational design is associated with inflation of effect sizes (and possibly hindered reproducibility), we suggest that researchers, editors, and publishers collaboratively consider enhanced adherence to published guidelines.


Asunto(s)
Hemorragia Cerebral/tratamiento farmacológico , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Proyectos de Investigación/normas , Investigación Biomédica Traslacional/normas , Animales , Humanos
9.
Ther Hypothermia Temp Manag ; 10(3): 171-178, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32456561

RESUMEN

Localized brain hypothermia (HYPO) can be achieved by infusing cold saline into the carotid artery of animals and patients. Studies suggest that HYPO improves behavioral and histological outcomes in focal ischemia models. Given that ischemic stroke and intracerebral hemorrhage (ICH) share pathophysiological overlap, we tested whether cold saline infusion is safe and neuroprotective when given during collagenase-induced ICH. Eighty-five adult male Sprague-Dawley rats were used. Experiment 1 investigated brain and body temperature changes associated with a cold saline infusion paradigm that was scaled from patients according to brain weight and blood volume (3 mL/20-minute infusion). Experiment 2 determined whether HYPO aggravated bleeding volume. Experiment 3 investigated if cerebral edema or elemental concentrations were altered by HYPO. We also collected core body temperature and activity data through telemetry. Experiment 4 investigated whether behavioral outcomes (e.g., skilled reaching) and tissue loss were influenced by HYPO. Our HYPO protocol decreased the ipsilateral striatal temperature by ∼0.20°C (p < 0.001), with no other effects. HYPO did not affect hematoma volume (p = 0.64), cerebral edema (p = 0.34), or elemental concentrations (p = 0.49) at 24 hours post-ICH. Although ICH caused persistent behavioral impairments, HYPO did not improve behavioral outcomes (measured by a neurological deficit scale, cylinder, and the staircase test; p > 0.05 for all). Brain tissue loss was not different between groups on day 28 post-ICH (p = 0.90). Although cold saline infusion appears to be safe in the acute post-ICH period, there was no evidence that this therapy improved outcome. However, our treatment protocol was relatively mild and additional interventions might help improve efficacy. Finally, our findings may also speak to the safety of this cooling approach in focal ischemia where hemorrhagic transformation is a risk; future studies on this issue are needed.


Asunto(s)
Edema Encefálico , Hipotermia Inducida , Animales , Edema Encefálico/etiología , Edema Encefálico/terapia , Arterias Carótidas , Hemorragia Cerebral/terapia , Modelos Animales de Enfermedad , Humanos , Masculino , Ratas , Ratas Sprague-Dawley
10.
Front Neurol ; 11: 588479, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488495

RESUMEN

Background: As not all ischemic stroke patients benefit from currently available treatments, there is considerable need for neuroprotective co-therapies. Therapeutic hypothermia is one such co-therapy, but numerous issues have hampered its clinical use (e.g., pneumonia risk with whole-body cooling). Some problems may be avoided with brain-specific methods, such as intra-arterial selective cooling infusion (IA-SCI) into the arteries supplying the ischemic tissue. Objective: Our research question was about the efficacy of IA-SCI in animal middle cerebral artery occlusion models. We hypothesized that IA-SCI would be beneficial, but translationally-relevant study elements may be missing (e.g., aged animals). Methods: We completed a systematic review of the PubMed database following the PRISMA guidelines on May 21, 2020 for animal studies that administered IA-SCI in the peri-reperfusion period and assessed infarct volume, behavior (primary meta-analytic endpoints), edema, or blood-brain barrier injury (secondary endpoints). Our search terms included: "focal ischemia" and related terms, "IA-SCI" and related terms, and "animal" and related terms. Nineteen studies met inclusion criteria. We adapted a methodological quality scale from 0 to 12 for experimental design assessment (e.g., use of blinding/randomization, a priori sample size calculations). Results: Studies were relatively homogenous (e.g., all studies used young, healthy animals). Some experimental design elements, such as blinding, were common whereas others, such as sample size calculations, were infrequent (median methodological quality score: 5; range: 2-7). Our analyses revealed that IA-SCI provides benefit on all endpoints (mean normalized infarct volume reduction = 23.67%; 95% CI: 19.21-28.12; mean normalized behavioral improvement = 35.56%; 95% CI: 25.91-45.20; mean standardized edema reduction = 0.95; 95% CI: 0.56-1.34). Unfortunately, blood-brain barrier assessments were uncommon and could not be analyzed. However, there was substantial statistical heterogeneity and relatively few studies. Therefore, exploration of heterogeneity via meta-regression using saline infusion parameters, study quality, and ischemic duration was inconclusive. Conclusion: Despite convincing evidence of benefit in ischemic stroke models, additional studies are required to determine the scope of benefit, especially when considering additional elements (e.g., dosing characteristics). As there is interest in using this treatment alongside current ischemic stroke therapies, more relevant animal studies will be critical to inform patient studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA