Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 30(2): 782-797, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34563677

RESUMEN

Tauopathies are neurodegenerative diseases characterized by tau inclusions in brain cells. Seed-competent tau species have been suggested to spread from cell to cell in a stereotypical manner, indicating that this may involve a prion-like mechanism. Although the intercellular mechanisms of transfer are unclear, extracellular vesicles (EVs) could be potential shuttles. We assessed this in humans by preparing vesicles from fluids (brain-derived enriched EVs [BD-EVs]). These latter were isolated from different brain regions in various tauopathies, and their seeding potential was assessed in vitro and in vivo. We observed considerable heterogeneity among tauopathies and brain regions. The most striking evidence was coming mainly from Alzheimer's disease where the BD-EVs clearly contain pathological species that can induce tau lesions in vivo. The results support the hypothesis that BD-EVs participate in the prion-like propagation of tau pathology among tauopathies, and there may be implications for diagnostic and therapeutic strategies.


Asunto(s)
Enfermedad de Alzheimer , Vesículas Extracelulares , Tauopatías , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Tauopatías/genética , Tauopatías/patología , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Brain ; 142(6): 1736-1750, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31038156

RESUMEN

Tauopathies are neurodegenerative diseases characterized by the intraneuronal accumulation of aggregated tau. The staging of this neurodegenerative process is well established for Alzheimer's disease as well as for other tauopathies. The stereotypical pattern of tau pathology in these diseases is consistent with the hypothesis that the tau protein can spread in a 'prion-like' manner. It proposes that extracellular pathological tau species can transmit pathology from cell to cell. Accordingly, by targeting these spreading species with therapeutic antibodies one should be able to slow or halt the progression of tau pathology. To be effective, antibodies should neutralize the pathological species present in Alzheimer's disease brains and block their cell-to-cell spread. To evaluate both aspects, tau antibody D, which recognizes an epitope in the central region of tau, and was selected for its outstanding ability to block tau seeding in cell based assays, was used in this study. Here, we addressed two fundamental questions: (i) can this anti-tau antibody neutralize the pathological species present in Alzheimer's disease brains; and (ii) can it block the cell-to-cell spread of tau seeds in vivo? First, antibody D effectively prevented the induction of tau pathology in the brains of transgenic mice that had been injected with human Alzheimer's disease brain extracts, showing that it could effectively neutralize the pathological species present in these extracts. Second, by using K18 P301L tau fibrils to induce pathology, we further demonstrated that antibody D was also capable of blocking the progression of tau pathology to distal brain regions. In contrast, an amino-terminal tau antibody, which was less effective at blocking tau seeding in vitro showed less efficacy in reducing Alzheimer's disease patient tau driven pathology in the transgenic mouse model. We did not address whether the same is true for a spectrum of other amino-terminal antibodies that were tested in vitro. These data highlight important differences between tau antibodies and, when taken together with other recently published data, suggest that epitope may be important for function.


Asunto(s)
Enfermedad de Alzheimer/patología , Ovillos Neurofibrilares/patología , Tauopatías/metabolismo , Proteínas tau/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Animales , Anticuerpos/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Epítopos , Femenino , Factores Inmunológicos/metabolismo , Inmunoterapia , Masculino , Ratones Transgénicos , Proteínas tau/metabolismo
3.
Acta Neuropathol Commun ; 6(1): 132, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30497516

RESUMEN

Tauopathies are a heterogeneous group of pathologies characterized by tau aggregation inside neurons. Most of them are sporadic but certain tauopathies rely on tau gene (MAPT) mutations. They particularly differ from one to another by their different neuropathological signatures e.g. lesion shapes, regions affected and molecular composition of aggregates. Six isoforms of tau exist, but they do not all co-aggregate in each tauopathy but rather have a unique signature for each one. In some tauopathies such as Alzheimer's disease (AD), tau protein aggregation follows stereotypical anatomical stages. Recent data suggest that this progression is due to an active process of tau protein propagation from neuron-to-neuron. We wondered how tau isoforms or mutations could influence the process of tau aggregation and tau propagation. In human neuropathological material, we found that MAPT mutations induce a faster misfolding compared to tau found in sporadic AD patients. In the rat brain, we observed cell-to-cell transfer of non-pathological tau species irrespective of the tested isoform or presence of a mutation. By contrast, we found that the species of tau impact the propagation of tau pathology markers such as hyperphosphorylation and misfolding. Indeed, misfolding and hyperphosphorylated tau proteins do not spread at the same rate when tau is mutated, or the isoform composition is modified. These results clearly argue for the existence of specific folding properties of tau depending on isoforms or mutations impacting the behavior of pathological tau species.


Asunto(s)
Deficiencias en la Proteostasis/complicaciones , Tauopatías , Proteínas tau/genética , Proteínas tau/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Inyecciones Intraventriculares , Masculino , Persona de Mediana Edad , Mutación/genética , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Wistar , Índice de Severidad de la Enfermedad , Tauopatías/etiología , Tauopatías/genética , Tauopatías/metabolismo , Tauopatías/patología
4.
Brain ; 141(2): 535-549, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29253129

RESUMEN

Tauopathies are neurodegenerative diseases characterized by the aggregation of tau protein. These pathologies exhibit a wide variety of clinical and anatomo-pathological presentations, which may result from different pathological mechanisms. Although tau inclusions are a common feature in all these diseases, recent evidence instead implicates small oligomeric aggregates as drivers of tau-induced toxicity. Hence in vivo model systems displaying either soluble or fibrillary forms of wild-type or mutant tau are needed to better identify their respective pathological pathways. Here we used adeno-associated viruses to mediate gene transfer of human tau to the rat brain to develop models of pure tauopathies. Two different constructs were used, each giving rise to a specific phenotype developing in less than 3 months. First, hTAUWT overexpression led to a strong hyperphosphorylation of the protein, which was associated with neurotoxicity in the absence of any significant aggregation. In sharp contrast, its co-expression with the pro-aggregation peptide TauRD-ΔK280 in the hTAUProAggr group strongly promoted its aggregation into Gallyas-positive neurofibrillary tangles, while preserving neuronal survival. Our results support the hypothesis that soluble tau species are key players of tau-induced neurodegeneration.


Asunto(s)
Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Tauopatías/metabolismo , Proteínas tau/metabolismo , Animales , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Tinción con Nitrato de Plata , Tauopatías/diagnóstico por imagen , Transducción Genética , Vimentina/metabolismo , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...