Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575807

RESUMEN

Subtype 5 metabotropic glutamate receptors (mGlu5) are known to play an important role in regulating cognitive, social and valence systems. However, it remains largely unknown at which circuits and neuronal types mGlu5 act to influence these behavioral domains. Altered tissue- or cell-specific expression or function of mGlu5 has been proposed to contribute to the exacerbation of neuropsychiatric disorders. Here, we examined how these receptors regulate the activity of somatostatin-expressing (SST+) neurons, as well as their influence on behavior and brain rhythmic activity. Loss of mGlu5 in SST+ neurons elicited excitatory synaptic dysfunction in a region and sex-specific manner together with a range of emotional imbalances including diminished social novelty preference, reduced anxiety-like behavior and decreased freezing during retrieval of fear memories. In addition, the absence of mGlu5 in SST+ neurons during fear processing impaired theta frequency oscillatory activity in the medial prefrontal cortex and ventral hippocampus. These findings reveal a critical role of mGlu5 in controlling SST+ neurons excitability necessary for regulating negative emotional states.

2.
Front Cell Neurosci ; 17: 1146278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545878

RESUMEN

Inhibitory γ-aminobutyric acid (GABA)-ergic interneurons mediate inhibition in neuronal circuitry and support normal brain function. Consequently, dysregulation of inhibition is implicated in various brain disorders. Parvalbumin (PV) and somatostatin (SST) interneurons, the two major types of GABAergic inhibitory interneurons in the hippocampus, exhibit distinct morpho-physiological properties and coordinate information processing and memory formation. However, the molecular mechanisms underlying the specialized properties of PV and SST interneurons remain unclear. This study aimed to compare the transcriptomic differences between these two classes of interneurons in the hippocampus using the ribosome tagging approach. The results revealed distinct expressions of genes such as voltage-gated ion channels and GABAA receptor subunits between PV and SST interneurons. Gabrd and Gabra6 were identified as contributors to the contrasting tonic GABAergic inhibition observed in PV and SST interneurons. Moreover, some of the differentially expressed genes were associated with schizophrenia and epilepsy. In conclusion, our results provide molecular insights into the distinct roles of PV and SST interneurons in health and disease.

3.
J Clin Invest ; 133(11)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37071482

RESUMEN

Maintaining internal osmolality constancy is essential for life. Release of arginine vasopressin (AVP) in response to hyperosmolality is critical. Current hypotheses for osmolality sensors in circumventricular organs (CVOs) of the brain focus on mechanosensitive membrane proteins. The present study demonstrated that intracellular protein kinase WNK1 was involved. Focusing on vascular-organ-of-lamina-terminalis (OVLT) nuclei, we showed that WNK1 kinase was activated by water restriction. Neuron-specific conditional KO (cKO) of Wnk1 caused polyuria with decreased urine osmolality that persisted in water restriction and blunted water restriction-induced AVP release. Wnk1 cKO also blunted mannitol-induced AVP release but had no effect on osmotic thirst response. The role of WNK1 in the osmosensory neurons in CVOs was supported by neuronal pathway tracing. Hyperosmolality-induced increases in action potential firing in OVLT neurons was blunted by Wnk1 deletion or pharmacological WNK inhibitors. Knockdown of Kv3.1 channel in OVLT by shRNA reproduced the phenotypes. Thus, WNK1 in osmosensory neurons in CVOs detects extracellular hypertonicity and mediates the increase in AVP release by activating Kv3.1 and increasing action potential firing from osmosensory neurons.


Asunto(s)
Arginina Vasopresina , Sed , Arginina Vasopresina/genética , Homeostasis , Concentración Osmolar , Sed/fisiología , Agua
4.
Development ; 150(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36786332

RESUMEN

Precise genome manipulation in specific cell types and subtypes in vivo is crucial for neurobiological research because of the cellular heterogeneity of the brain. Site-specific recombinase systems in the mouse, such as Cre-loxP, improve cell type-specific genome manipulation; however, undesirable expression of cell type-specific Cre can occur. This could be due to transient expression during early development, natural expression in more than one cell type, kinetics of recombinases, sensitivity of the Cre reporter, and disruption in cis-regulatory elements by transgene insertion. Moreover, cell subtypes cannot be distinguished in cell type-specific Cre mice. To address these issues, we applied an intersectional genetic approach in mouse using triple recombination systems (Cre-loxP, Flp-FRT and Dre-rox). As a proof of principle, we labelled heterogeneous cell subtypes and deleted target genes within given cell subtypes by labelling neuropeptide Y (NPY)-, calretinin (calbindin 2) (CR)- and cholecystokinin (CCK)-expressing GABAergic neurons in the brain followed by deletion of RNA-binding Fox-1 homolog 3 (Rbfox3) in our engineered mice. Together, our study applies an intersectional genetic approach in vivo to generate engineered mice serving dual purposes of simultaneous cell subtype-specific labelling and gene knockout.


Asunto(s)
Integrasas , Recombinasas , Ratones , Animales , Técnicas de Inactivación de Genes , Integrasas/metabolismo , Recombinasas/genética , Recombinasas/metabolismo , Transgenes , Encéfalo/metabolismo , Ratones Transgénicos
5.
J Headache Pain ; 23(1): 157, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36510143

RESUMEN

BACKGROUND: To investigate specific brain regions and neural circuits that are responsible for migraine chronification. METHODS: We established a mouse model of chronic migraine with intermittent injections of clinically-relevant dose of nitroglycerin (0.1 mg/kg for 9 days) and validated the model with cephalic and extracephalic mechanical sensitivity, calcitonin gene-related peptide (CGRP) expression in trigeminal ganglion, and responsiveness to sumatriptan or central CGRP blockade. We explored the neurons that were sensitized along with migraine chronification and investigated their roles on migraine phenotypes with chemogenetics. RESULTS: After repetitive nitroglycerin injections, mice displayed sustained supraorbital and hind paw mechanical hyperalgesia, which lasted beyond discontinuation of nitroglycerin infusion and could be transiently reversed by sumatriptan. The CGRP expression in trigeminal ganglion was also upregulated. We found the pERK positive cells were significantly increased in the central nucleus of the amygdala (CeA), and these sensitized cells in the CeA were predominantly protein kinase C-delta (PKC-δ) positive neurons co-expressing CGRP receptors. Remarkably, blockade of the parabrachial nucleus (PBN)-CeA CGRP neurotransmission by CGRP8-37 microinjection to the CeA attenuated the sustained cephalic and extracephalic mechanical hyperalgesia. Furthermore, chemogenetic silencing of the sensitized CeA PKC-δ positive neurons reversed the mechanical hyperalgesia and CGRP expression in the trigeminal ganglion. In contrast, repetitive chemogenetic activation of the CeA PKC-δ positive neurons recapitulated chronic migraine-like phenotypes in naïve mice. CONCLUSIONS: Our data suggest that CeA PKC-δ positive neurons innervated by PBN CGRP positive neurons might contribute to the chronification of migraine, which may serve as future therapeutic targets for chronic migraine.


Asunto(s)
Núcleo Amigdalino Central , Trastornos Migrañosos , Ratones , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Núcleo Amigdalino Central/metabolismo , Proteína Quinasa C-delta/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Trastornos Migrañosos/metabolismo , Hiperalgesia/metabolismo , Nitroglicerina/farmacología
6.
Elife ; 112022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377439

RESUMEN

Chronic pain disorders are often associated with negative emotions, including anxiety and depression. The central nucleus of the amygdala (CeA) has emerged as an integrative hub for nociceptive and affective components during central pain development. Prior adverse injuries are precipitating factors thought to transform nociceptors into a primed state for chronic pain. However, the cellular basis underlying the primed state and the subsequent development of chronic pain remains unknown. Here, we investigated the cellular and synaptic alterations of the CeA in a mouse model of chronic muscle pain. In these mice, local infusion of pregabalin, a clinically approved drug for fibromyalgia and other chronic pain disorders, into the CeA or chemogenetic inactivation of the somatostatin-expressing CeA (CeA-SST) neurons during the priming phase prevented the chronification of pain. Further, electrophysiological recording revealed that the CeA-SST neurons had increased excitatory synaptic drive and enhanced neuronal excitability in the chronic pain states. Finally, either chemogenetic inactivation of the CeA-SST neurons or pharmacological suppression of the nociceptive afferents from the brainstem to the CeA-SST neurons alleviated chronic pain and anxio-depressive symptoms. These data raise the possibility of targeting treatments to CeA-SST neurons to prevent central pain sensitization.


Asunto(s)
Dolor Crónico , Neuralgia , Ratas , Ratones , Animales , Sensibilización del Sistema Nervioso Central , Ratas Sprague-Dawley , Dolor Crónico/complicaciones , Mialgia , Amígdala del Cerebelo , Modelos Animales de Enfermedad
7.
Transl Psychiatry ; 12(1): 411, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163151

RESUMEN

Mood disorders are an important public health issue and recent advances in genomic studies have indicated that molecules involved in neurodevelopment are causally related to mood disorders. BLM-s (BCL-2-like molecule, small transcript isoform), a BH3-only proapoptotic BCL-2 family member, mediates apoptosis of postmitotic immature neurons during embryonic cortical development, but its role in the adult brain is unknown. To better understand the physiological role of Blm-s gene in vivo, we generated a Blm-s-knockout (Blm-s-/-) mouse. The Blm-s-/- mice breed normally and exhibit grossly normal development. However, global depletion of Blm-s is highly associated with depression- and anxiety-related behaviors in adult mutant mice with intact learning and memory capacity. Functional magnetic resonance imaging of adult Blm-s-/- mice reveals reduced connectivity mainly in the ventral dentate gyrus (vDG) of the hippocampus with no alteration in the dorsal DG connectivity and in total hippocampal volume. At the cellular level, BLM-s is expressed in DG granule cells (GCs), and Blm-s-/- mice show reduced dendritic complexity and decreased spine density in mature GCs. Electrophysiology study uncovers that mature vGCs in adult Blm-s-/- DG are intrinsically more excitable. Interestingly, certain genetic variants of the human Blm homologue gene (VPS50) are significantly associated with depression traits from publicly resourced UK Biobank data. Taken together, BLM-s is required for the hippocampal mood control function. Loss of BLM-s causes abnormality in the electrophysiology and morphology of GCs and a disrupted vDG neural network, which could underlie Blm-s-null-associated anxiety and depression.


Asunto(s)
Hipocampo , Neurogénesis , Adulto , Animales , Apoptosis , Giro Dentado , Hipocampo/diagnóstico por imagen , Humanos , Ratones , Neurogénesis/genética , Neuronas , Proteínas Proto-Oncogénicas c-bcl-2 , RecQ Helicasas
8.
J Neurochem ; 163(1): 26-39, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35943292

RESUMEN

Alzheimer disease (AD), a progressive neurodegenerative disorder, is mainly caused by the interaction of genetic and environmental factors. The impact of environmental factors on the genetic mutation in the amyloid precursor protein (APP) is not well characterized. We hypothesized that endoplasmic reticulum (ER) stress would promote disease for the patient carrying the APP D678H mutation. Therefore, we analyzed the impact of a familial AD mutation on amyloid precursor protein (APP D678H) under ER stress. Induced pluripotent stem cells (iPSCs) from APP D678H mutant carrier was differentiated into neurons, which were then analyzed for AD-like changes. Immunocytochemistry and whole-cell patch-clamp recording revealed that the derived neurons on day 28 after differentiation showed neuronal markers and electrophysiological properties similar to those of mature neurons. However, the APP D678H mutant neurons did not have significant alterations in the levels of amyloid-ß (Aß) and phosphorylated tau (pTau) compared to its isogenic wild-type neurons. Only under ER stress, the neurons with the APP D678H mutation had more Aß and pTau via immune detection assays. The higher level of Aß in the APP D678H mutant neurons was probably due to the increased level of ß-site APP cleaving enzyme (BACE1) and decreased level of Aß-degrading enzymes under ER stress. Increased Aß and pTau under ER stress reduced the N-methyl-D-aspartate receptor (NMDAR) in Western blot analysis and altered electrophysiological properties in the mutant neurons. Our study provides evidence that the interaction between genetic mutation and ER stress would induce AD-like changes. Cover Image for this issue: https://doi.org/10.1111/jnc.15420.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Estrés del Retículo Endoplásmico/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Neuronas/metabolismo , Fenotipo , Receptores de N-Metil-D-Aspartato/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(33): e2203632119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35951651

RESUMEN

Epilepsy is a common neurological disorder, which has been linked to mutations or deletions of RNA binding protein, fox-1 homolog (Caenorhabditis elegans) 3 (RBFOX3)/NeuN, a neuronal splicing regulator. However, the mechanism of seizure mediation by RBFOX3 remains unknown. Here, we show that mice with deletion of Rbfox3 in gamma-aminobutyric acid (GABA) ergic neurons exhibit spontaneous seizures and high premature mortality due to increased presynaptic release, postsynaptic potential, neuronal excitability, and synaptic transmission in hippocampal dentate gyrus granule cells (DGGCs). Attenuating early excitatory gamma-aminobutyric acid (GABA) action by administering bumetanide, an inhibitor of early GABA depolarization, rescued premature mortality. Rbfox3 deletion reduced hippocampal expression of vesicle-associated membrane protein 1 (VAMP1), a GABAergic neuron-specific presynaptic protein. Postnatal restoration of VAMP1 rescued premature mortality and neuronal excitability in DGGCs. Furthermore, Rbfox3 deletion in GABAergic neurons showed fewer neuropeptide Y (NPY)-expressing GABAergic neurons. In addition, deletion of Rbfox3 in NPY-expressing GABAergic neurons lowered intrinsic excitability and increased seizure susceptibility. Our results establish RBFOX3 as a critical regulator and possible treatment path for epilepsy.


Asunto(s)
Proteínas de Unión al ADN , Neuronas GABAérgicas , Proteínas del Tejido Nervioso , Neuropéptido Y , Convulsiones , Proteína 1 de Membrana Asociada a Vesículas , Animales , Bumetanida/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Giro Dentado/metabolismo , Antagonistas del GABA/farmacología , Neuronas GABAérgicas/metabolismo , Eliminación de Gen , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropéptido Y/metabolismo , Convulsiones/genética , Convulsiones/metabolismo , Proteína 1 de Membrana Asociada a Vesículas/genética , Proteína 1 de Membrana Asociada a Vesículas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
10.
J Physiol ; 600(14): 3355-3381, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35671148

RESUMEN

The hippocampus is an elongated brain structure which runs along a ventral-to-dorsal axis in rodents, corresponding to the anterior-to-posterior axis in humans. A glutamatergic cell type in the dentate gyrus (DG), the mossy cells (MCs), establishes extensive excitatory collateral connections with the DG principal cells, the granule cells (GCs), and inhibitory interneurons in both hippocampal hemispheres along the longitudinal axis. Although coupling of two physically separated GC populations via long-axis projecting MCs is instrumental for information processing, the connectivity and synaptic features of MCs along the longitudinal axis are poorly defined. Here, using channelrhodopsin-2 assisted circuit mapping, we showed that MC excitation results in a low synaptic excitation-inhibition (E/I) balance in the intralamellar (local) GCs, but a high synaptic E/I balance in the translamellar (distant) ones. In agreement with the differential E/I balance along the ventrodorsal axis, activation of MCs either enhances or suppresses the local GC response to the cortical input, but primarily promotes the distant GC activation. Moreover, activation of MCs enhances the spike timing precision of the local GCs, but not that of the distant ones. Collectively, these findings suggest that MCs differentially regulate the local and distant GC activity through distinct synaptic mechanisms. KEY POINTS: Hippocampal mossy cell (MC) pathways differentially regulate granule cell (GC) activity along the longitudinal axis. MCs mediate a low excitation-inhibition balance in intralamellar (local) GCs, but a high excitation-inhibition balance in translamellar (distant) GCs. MCs enhance the spiking precision of local GCs, but not distant GCs. MCs either promote or suppress local GC activity, but primarily promote distant GC activation.


Asunto(s)
Hipocampo , Fibras Musgosas del Hipocampo , Channelrhodopsins , Giro Dentado/fisiología , Hipocampo/fisiología , Humanos , Interneuronas , Fibras Musgosas del Hipocampo/fisiología
11.
Cell Rep ; 39(7): 110831, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584671

RESUMEN

The dentate gyrus (DG) receives substantial input from the homologous brain area of the contralateral hemisphere. This input is by and large excitatory. Viral-tracing experiments provided anatomical evidence for the existence of GABAergic connectivity between the two DGs, but the function of these projections has remained elusive. Combining electrophysiological and optogenetic approaches, we demonstrate that somatostatin-expressing contralateral DG (SOM+ cDG)-projecting neurons preferentially engage dendrite-targeting interneurons over principal neurons. Single-unit recordings from freely moving mice reveal that optogenetic stimulation of SOM+ cDG projections modulates the activity of GABAergic neurons and principal neurons over multiple timescales. Importantly, we demonstrate that optogenetic silencing of SOM+ cDG projections during spatial memory encoding, but not during memory retrieval, results in compromised DG-dependent memory. Moreover, optogenetic stimulation of SOM+ cDG projections is sufficient to disrupt contextual memory recall. Collectively, our findings reveal that SOM+ long-range projections mediate inter-DG inhibition and contribute to learning and memory.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Animales , Giro Dentado , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Aprendizaje , Memoria/fisiología , Ratones , Optogenética
12.
Pain ; 163(3): e463-e475, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34174041

RESUMEN

ABSTRACT: Chronic pain is often accompanied by anxiety and depression disorders. Amygdala nuclei play important roles in emotional responses, fear, depression, anxiety, and pain modulation. The exact mechanism of how amygdala neurons are involved in pain and anxiety is not completely understood. The central nucleus of the amygdala contains 2 major subpopulations of GABAergic neurons that express somatostatin (SOM+) or protein kinase Cδ (PKCδ+). In this study, we found about 70% of phosphorylated ERK-positive neurons colocalized with PKCδ+ neurons in the formalin-induced pain model in mice. Optogenetic activation of PKCδ+ neurons was sufficient to induce mechanical hyperalgesia without changing anxiety-like behavior in naïve mice. Conversely, chemogenetic inhibition of PKCδ+ neurons significantly reduced the mechanical hyperalgesia in the pain model. By contrast, optogenetic inhibition of SOM+ neurons induced mechanical hyperalgesia in naïve mice and increased phosphorylated ERK-positive neurons mainly in PKCδ+ neurons. Optogenetic activation of SOM+ neurons slightly reduced the mechanical hyperalgesia in the pain model but did not change the mechanical sensitivity in naïve mice. Instead, it induced anxiety-like behavior. Our results suggest that the PKCδ+ and SOM+ neurons in the central amygdala exert different functions in regulating pain-like and anxiety-like behaviors in mice.


Asunto(s)
Núcleo Amigdalino Central , Dolor Crónico , Animales , Ansiedad/etiología , Núcleo Amigdalino Central/metabolismo , Dolor Crónico/metabolismo , Neuronas GABAérgicas , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Ratones
13.
iScience ; 24(12): 103506, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34934925

RESUMEN

Long-term memory (LTM) formation requires consolidation processes to overcome interfering signals that erode memory formation. Olfactory memory in Drosophila involves convergent projection neuron (PN; odor) and dopaminergic neuron (DAN; reinforcement) input to the mushroom body (MB). How post-training DAN activity in the posterior lateral protocerebrum (PPL1) continues to regulate memory consolidation remains unknown. Here we address this question using targeted transgenes in behavior and electrophysiology experiments to show that (1) persistent post-training activity of PPL1-α2α'2 and PPL1-α3 DANs interferes with aversive LTM formation; (2) neuropeptide F (NPF) signaling blocks this interference in PPL1-α2α'2 and PPL1-α3 DANs after spaced training to enable LTM formation; and (3) training-induced NPF release and neurotransmission from two upstream dorsal-anterior-lateral (DAL2) neurons are required to form LTM. Thus, NPF signals from DAL2 neurons to specific PPL1 DANs disinhibit the memory circuit, ensuring that periodic events are remembered as consolidated LTM.

14.
Cell Rep ; 36(11): 109702, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34525354

RESUMEN

Modulation of hippocampal dentate gyrus (DG) excitability regulates anxiety. In the DG, glutamatergic mossy cells (MCs) receive the excitatory drive from principal granule cells (GCs) and mediate the feedback excitation and inhibition of GCs. However, the circuit mechanism by which MCs regulate anxiety-related information routing through hippocampal circuits remains unclear. Moreover, the correlation between MC activity and anxiety states is unclear. In this study, we first demonstrate, by means of calcium fiber photometry, that MC activity in the ventral hippocampus (vHPC) of mice increases while they explore anxiogenic environments. Next, juxtacellular recordings reveal that optogenetic activation of MCs preferentially recruits GABAergic neurons, thereby suppressing GCs and ventral CA1 neurons. Finally, chemogenetic excitation of MCs in the vHPC reduces avoidance behaviors in both healthy and anxious mice. These results not only indicate an anxiolytic role of MCs but also suggest that MCs may be a potential therapeutic target for anxiety disorders.


Asunto(s)
Conducta Animal/fisiología , Hipocampo/metabolismo , Fibras Musgosas del Hipocampo/patología , Animales , Región CA1 Hipocampal/metabolismo , Calcio/metabolismo , Dolor Crónico/metabolismo , Dolor Crónico/patología , Giro Dentado/citología , Modelos Animales de Enfermedad , Fibromialgia/metabolismo , Fibromialgia/patología , Neuronas GABAérgicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética/métodos , Técnicas de Placa-Clamp
15.
J Neurosci ; 41(39): 8181-8196, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34380766

RESUMEN

Subcortical input engages in cortico-hippocampal information processing. Neurons of the hypothalamic supramammillary nucleus (SuM) innervate the dentate gyrus (DG) by coreleasing two contrasting fast neurotransmitters, glutamate and GABA, and thereby support spatial navigation and contextual memory. However, the synaptic mechanisms by which SuM neurons regulate the DG activity and synaptic plasticity are not well understood. The DG comprises excitatory granule cells (GCs) as well as inhibitory interneurons (INs). Combining optogenetic, electrophysiological, and pharmacological approaches, we demonstrate that the SuM input differentially regulates the activities of different DG neurons in mice of either sex via distinct synaptic mechanisms. Although SuM activation results in synaptic excitation and inhibition in all postsynaptic cells, the ratio of these two components is variable and cell type-dependent. Specifically, dendrite-targeting INs receive predominantly synaptic excitation, whereas soma-targeting INs and GCs receive primarily synaptic inhibition. Although SuM excitation alone is insufficient to excite GCs, it enhances the GC spiking precision and reduces the latencies in response to excitatory drives. Furthermore, SuM excitation enhances the GC spiking in response to the cortical input, thereby promoting induction of long-term potentiation at cortical-GC synapses. Collectively, these findings provide physiological significance of the cotransmission of glutamate/GABA by SuM neurons in the DG network.SIGNIFICANCE STATEMENT The cortical-hippocampal pathways transfer mnemonic information during memory acquisition and retrieval, whereas subcortical input engages in modulation of communication between the cortex and hippocampus. The supramammillary nucleus (SuM) neurons of the hypothalamus innervate the dentate gyrus (DG) by coreleasing glutamate and GABA onto granule cells (GCs) and interneurons and support memories. However, how the SuM input regulates the activity of various DG cell types and thereby contributes to synaptic plasticity remains unexplored. Combining optogenetic and electrophysiological approaches, we demonstrate that the SuM input differentially regulates DG cell dynamics and consequently enhances GC excitability as well as synaptic plasticity at cortical input-GC synapses. Our findings highlight a significant role of glutamate/GABA cotransmission in regulating the input-output dynamics of DG circuits.


Asunto(s)
Giro Dentado/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Neuronas/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Vías Nerviosas/metabolismo , Sinapsis/fisiología
16.
J Comp Neurol ; 529(10): 2658-2675, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33484471

RESUMEN

The hippocampus is a key brain structure for cognitive and emotional functions. Among the hippocampal subregions, the dentate gyrus (DG) is the first station that receives multimodal sensory information from the cortex. Local-circuit inhibitory GABAergic interneurons (INs) regulate the excitation-inhibition balance in the DG principal neurons (PNs) and therefore are critical for information processing. Similar to PNs, GABAergic INs also receive distinct inhibitory inputs. Among various classes of INs, vasoactive intestinal polypeptide-expressing (VIP+ ) INs preferentially target other INs in several brain regions and thereby directly modulate the GABAergic system. However, the morpho-physiological characteristics and postsynaptic targets of VIP+ INs in the DG are poorly understood. Here, we report that VIP+ INs in the mouse DG are highly heterogeneous based on their morpho-physiological characteristics. In approximately two-thirds of morphologically reconstructed cells, their axons ramify in the hilus. The remaining cells project their axons exclusively to the molecular layer (15%), to both the molecular layer and hilus (10%), or throughout the entire DG layers (8%). Generally, VIP+ INs display variable intrinsic properties and discharge patterns without clear correlation with their morphologies. Finally, VIP+ INs are recruited with a long latency in response to theta-band cortical inputs and preferentially innervate GABAergic INs over glutamatergic PNs. In summary, VIP+ INs in the DG are composed of highly diverse subpopulations and control the DG output via disinhibition.


Asunto(s)
Giro Dentado/citología , Giro Dentado/fisiología , Interneuronas/citología , Interneuronas/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Animales , Ratones , Ratones Transgénicos
17.
Sci Rep ; 9(1): 19301, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848379

RESUMEN

Alzheimer's disease (AD) is the most common type of dementia and also one of the leading causes of death worldwide. However, the underlying mechanisms remain unclear, and currently there is no drug treatment that can prevent or cure AD. Here, we have applied the advantages of using induced pluripotent stem cell (iPSC)-derived neurons (iNs) from AD patients, which are able to offer human-specific drug responsiveness, in order to evaluate therapeutic candidates for AD. Using approach involving an inducible neurogenin-2 transgene, we have established a robust and reproducible protocol for differentiating human iPSCs into glutamatergic neurons. The AD-iN cultures that result have mature phenotypic and physiological properties, together with AD-like biochemical features that include extracellular ß-amyloid (Aß) accumulation and Tau protein phosphorylation. By screening using a gene set enrichment analysis (GSEA) approach, Graptopetalum paraguayense (GP) has been identified as a potential therapeutic agent for AD from among a range of Chinese herbal medicines. We found that administration of a GP extract caused a significantly reduction in the AD-associated phenotypes of the iNs, including decreased levels of extracellular Aß40 and Aß42, as well as reduced Tau protein phosphorylation at positions Ser214 and Ser396. Additionally, the effect of GP was more prominent in AD-iNs compared to non-diseased controls. These findings provide valuable information that suggests moving extracts of GP toward drug development, either for treating AD or as a health supplement to prevent AD. Furthermore, our human iN-based platform promises to be a useful strategy when it is used for AD drug discovery.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/genética , Crassulaceae/química , Fragmentos de Péptidos/genética , Proteínas tau/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/efectos de los fármacos , Descubrimiento de Drogas , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/patología
18.
Mov Disord ; 34(6): 845-857, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30840784

RESUMEN

BACKGROUND: Altered γ-aminobutyric acid signaling is believed to disrupt the excitation/inhibition balance in the striatum, which may account for the motor symptoms of Huntington's disease. Na-K-2Cl cotransporter-1 is a key molecule that controls γ-aminobutyric acid-ergic signaling. However, the role of Na-K-2Cl cotransporter-1 and efficacy of γ-aminobutyric acid-ergic transmission remain unknown in Huntington's disease. METHODS: We determined the levels of Na-K-2Cl cotransporter-1 in brain tissue from Huntington's disease mice and patients by real-time quantitative polymerase chain reaction, western blot, and immunocytochemistry. Gramicidin-perforated patch-clamp recordings were used to measure the Eγ-aminobutyric acid in striatal brain slices. To inhibit Na-K-2Cl cotransporter-1 activity, R6/2 mice were treated with an intraperitoneal injection of bumetanide or adeno-associated virus-mediated delivery of Na-K-2Cl cotransporter-1 short-hairpin RNA into the striatum. Motor behavior assays were employed. RESULTS: Expression of Na-K-2Cl cotransporter-1 was elevated in the striatum of R6/2 and Hdh150Q/7Q mouse models. An increase in Na-K-2Cl cotransporter-1 transcripts was also found in the caudate nucleus of Huntington's disease patients. Accordingly, a depolarizing shift of Eγ-aminobutyric acid was detected in the striatum of R6/2 mice. Expression of the mutant huntingtin in astrocytes and neuroinflammation were necessary for enhanced expression of Na-K-2Cl cotransporter-1 in HD mice. Notably, pharmacological or genetic inhibition of Na-K-2Cl cotransporter-1 rescued the motor deficits of R6/2 mice. CONCLUSIONS: Our findings demonstrate that aberrant γ-aminobutyric acid-ergic signaling and enhanced Na-K-2Cl cotransporter-1 contribute to the pathogenesis of Huntington's disease and identify a new therapeutic target for the potential rescue of motor dysfunction in patients with Huntington's disease. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Núcleo Caudado/metabolismo , Enfermedad de Huntington/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Simportadores de Cloruro de Sodio-Potasio/genética
19.
Neurobiol Dis ; 109(Pt A): 25-32, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28927958

RESUMEN

Rett syndrome (RTT) is a devastating neurodevelopmental disorder caused by loss-of-function mutations in the X-linked methyl-CpG binding protein 2 (Mecp2) gene. GABAergic dysfunction has been implicated contributing to the respiratory dysfunction, one major clinical feature of RTT. The nucleus tractus solitarius (NTS) is the first central site integrating respiratory sensory information that can change the nature of the reflex output. We hypothesized that deficiency in Mecp2 gene reduces GABAergic neurotransmission in the NTS. Using whole-cell patch-clamp recordings in NTS slices, we measured spontaneous inhibitory postsynaptic currents (sIPSCs), miniature IPSCs (mIPSCs), NTS-evoked IPSCs (eIPSCs), and GABAA receptor (GABAA-R) agonist-induced responses. Compared to those from wild-type mice, NTS neurons from Mecp2-null mice had significantly (p<0.05) reduced sIPSC amplitude, sIPSC frequency, and mIPSC amplitude but not mIPSC frequency. Mecp2-null mice also had decreased eIPSC amplitude with no change in paired-pulse ratio. The data suggest reduced synaptic receptor-mediated phasic GABA transmission in Mecp2-null mice. In contrast, muscimol (GABAA-R agonist, 0.3-100µM) and THIP (selective extrasynaptic GABAA-R agonist, 5µM) induced significantly greater current response in Mecp2-null mice, suggesting increased extrasynaptic receptors. Using qPCR, we found a 2.5 fold increase in the delta subunit of the GABAA-Rs in the NTS in Mecp2-null mice, consistent with increased extrasynaptic receptors. As the NTS was recently found required for respiratory pathology in RTT, our results provide a mechanism for NTS dysfunction which involves shifting the balance of synaptic/extrasynaptic receptors in favor of extrasynaptic site, providing a target for boosting GABAergic inhibition in RTT.


Asunto(s)
Potenciales Postsinápticos Inhibidores , Proteína 2 de Unión a Metil-CpG/fisiología , Neuronas/fisiología , Síndrome de Rett/fisiopatología , Núcleo Solitario/fisiología , Transmisión Sináptica , Ácido gamma-Aminobutírico/fisiología , Animales , Modelos Animales de Enfermedad , Agonistas de Receptores de GABA-A , Proteína 2 de Unión a Metil-CpG/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Potenciales Postsinápticos Miniatura , Neuronas/efectos de los fármacos , ARN Mensajero/metabolismo , Receptores de GABA-A/administración & dosificación , Receptores de GABA-A/fisiología , Síndrome de Rett/metabolismo , Núcleo Solitario/metabolismo
20.
J Neurosci ; 37(16): 4391-4404, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28330877

RESUMEN

The K+ channel pore-forming subunit Kv4.3 is expressed in a subset of nonpeptidergic nociceptors within the dorsal root ganglion (DRG), and knockdown of Kv4.3 selectively induces mechanical hypersensitivity, a major symptom of neuropathic pain. K+ channel modulatory subunits KChIP1, KChIP2, and DPP10 are coexpressed in Kv4.3+ DRG neurons, but whether they participate in Kv4.3-mediated pain control is unknown. Here, we show the existence of a Kv4.3/KChIP1/KChIP2/DPP10 complex (abbreviated as the Kv4 complex) in the endoplasmic reticulum and cell surface of DRG neurons. After intrathecal injection of a gene-specific antisense oligodeoxynucleotide to knock down the expression of each component in the Kv4 complex, mechanical hypersensitivity develops in the hindlimbs of rats in parallel with a reduction in all components in the lumbar DRGs. Electrophysiological data further indicate that the excitability of nonpeptidergic nociceptors is enhanced. The expression of all Kv4 complex components in DRG neurons is downregulated following spinal nerve ligation (SNL). To rescue Kv4 complex downregulation, cDNA constructs encoding Kv4.3, KChIP1, and DPP10 were transfected into the injured DRGs (defined as DRGs with injured spinal nerves) of living SNL rats. SNL-evoked mechanical hypersensitivity was attenuated, accompanied by a partial recovery of Kv4.3, KChIP1, and DPP10 surface levels in the injured DRGs. By showing an interdependent regulation among components in the Kv4 complex, this study demonstrates that K+ channel modulatory subunits KChIP1, KChIP2, and DPP10 participate in Kv4.3-mediated mechanical pain control. Thus, these modulatory subunits could be potential drug targets for neuropathic pain.SIGNIFICANCE STATEMENT Neuropathic pain, a type of moderate to severe chronic pain resulting from nerve injury or disorder, affects 6.9%-10% of the global population. However, less than half of patients report satisfactory pain relief from current treatments. K+ channels, which act to reduce nociceptor activity, have been suggested to be novel drug targets for neuropathic pain. This study is the first to show that K+ channel modulatory subunits KChIP1, KChIP2, and DPP10 are potential drug targets for neuropathic pain because they form a channel complex with the K+ channel pore-forming subunit Kv4.3 in a subset of nociceptors to selectively inhibit mechanical hypersensitivity, a major symptom of neuropathic pain.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Proteínas de Interacción con los Canales Kv/metabolismo , Dolor Nociceptivo/metabolismo , Canales de Potasio Shal/metabolismo , Animales , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiología , Proteínas de Interacción con los Canales Kv/genética , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Dolor Nociceptivo/fisiopatología , Ratas , Ratas Sprague-Dawley , Canales de Potasio Shal/genética , Tacto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA