Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 9(2): 405-420, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38316932

RESUMEN

Tc toxins are virulence factors of bacterial pathogens. Although their structure and intoxication mechanism are well understood, it remains elusive where this large macromolecular complex is assembled and how it is released. Here we show by an integrative multiscale imaging approach that Yersinia entomophaga Tc (YenTc) toxin components are expressed only in a subpopulation of cells that are 'primed' with several other potential virulence factors, including filaments of the protease M66/StcE. A phage-like lysis cassette is required for YenTc release; however, before resulting in complete cell lysis, the lysis cassette generates intermediate 'ghost' cells, which may serve as assembly compartments and become packed with assembled YenTc holotoxins. We hypothesize that this stepwise mechanism evolved to minimize the number of cells that need to be killed. The occurrence of similar lysis cassettes in diverse organisms indicates a conserved mechanism for Tc toxin release that may apply to other extracellular macromolecular machines.


Asunto(s)
Factores de Virulencia , Yersinia , Yersinia/química , Endopeptidasas
3.
Nat Microbiol ; 7(3): 397-410, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35165385

RESUMEN

Contractile injection systems (CISs) are phage tail-like nanomachines, mediating bacterial cell-cell interactions as either type VI secretion systems (T6SSs) or extracellular CISs (eCISs). Bioinformatic studies uncovered a phylogenetic group of hundreds of putative CIS gene clusters that are highly diverse and widespread; however, only four systems have been characterized. Here we studied a putative CIS gene cluster in the marine bacterium Algoriphagus machipongonensis. Using an integrative approach, we show that the system is compatible with an eCIS mode of action. Our cryo-electron microscopy structure revealed several features that differ from those seen in other CISs: a 'cap adaptor' located at the distal end, a 'plug' exposed to the tube lumen, and a 'cage' formed by massive extensions of the baseplate. These elements are conserved in other CISs, and our genetic tools identified that they are required for assembly, cargo loading and function. Furthermore, our atomic model highlights specific evolutionary hotspots and will serve as a framework for understanding and re-engineering CISs.


Asunto(s)
Sistemas de Secreción Tipo VI , Bacteroidetes , Microscopía por Crioelectrón , Filogenia , Sistemas de Secreción Tipo VI/química , Sistemas de Secreción Tipo VI/genética
4.
EMBO Rep ; 21(1): e47961, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31808291

RESUMEN

The type VI secretion system (T6SS) is used by many bacteria to engage in social behavior and can affect the health of its host plant or animal. Because activities associated with T6SSs are often costly, T6SSs must be tightly regulated. However, our knowledge regarding how T6SS assembly and contraction are regulated remains limited. Using the plant pathogen Agrobacterium tumefaciens, we show that effectors are not just passengers but also impact on T6SS assembly. The A. tumefaciens strain C58 encodes one T6SS and two Tde DNase toxin effectors used as major weapons for interbacterial competition. Here, we demonstrate that loading of Tde effectors onto their cognate carriers, the VgrG spikes, is required for active T6SS secretion. The assembly of the TssBC contractile sheath occurs only in the presence of Tde effectors. The requirement of effector loading for efficient T6SS secretion was also validated in other A. tumefaciens strains. We propose that such a mechanism is used by bacteria as a strategy for efficacious T6SS firing and to ensure that effectors are loaded onto the T6SS prior to completing its assembly.


Asunto(s)
Sistemas de Secreción Tipo VI , Agrobacterium tumefaciens/genética , Proteínas Bacterianas/genética , Desoxirribonucleasas , Sistemas de Secreción Tipo VI/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-28664151

RESUMEN

The type VI secretion system (T6SS) is a nanomachine deployed by many Gram-negative bacteria as a weapon against eukaryotic hosts or prokaryotic competitors. It assembles into a bacteriophage tail-like structure that can transport effector proteins into the environment or target cells for competitive survival or pathogenesis. T6SS effectors have been identified by a variety of approaches, including knowledge/hypothesis-dependent and discovery-driven approaches. Here, we review and discuss the methods that have been used to identify T6SS effectors and the biological and biochemical functions of known effectors. On the basis of the nature and transport mechanisms of T6SS effectors, we further propose potential strategies that may be applicable to identify new T6SS effectors.


Asunto(s)
Bacterias Gramnegativas/metabolismo , Sistemas de Secreción Tipo VI/química , Sistemas de Secreción Tipo VI/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/metabolismo , Biología Computacional , Bacterias Gramnegativas/genética , Mutación , Proteómica , Sistemas de Secreción Tipo VI/genética
6.
Genome Announc ; 3(5)2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26430038

RESUMEN

Spiroplasma litorale TN-1(T) (DSM 21781) was isolated from the gut of a green-eyed horsefly (Tabanus nigrovittatus), collected at Ocracoke Island in North Carolina in 1983. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...