Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Orphanet J Rare Dis ; 14(1): 257, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727115

RESUMEN

BACKGROUND: The differentiation between Gaucher disease type 3 (GD3) and type 1 is challenging because pathognomonic neurologic symptoms may be subtle and develop at late stages. The ophthalmologist plays a crucial role in identifying the typical impairment of horizontal saccadic eye movements, followed by vertical ones. Little is known about further ocular involvement. The aim of this monocentric cohort study is to comprehensively describe the ophthalmological features of Gaucher disease type 3. We suggest recommendations for a set of useful ophthalmologic investigations for diagnosis and follow up and for saccadometry parameters enabling a correlation to disease severity. METHODS: Sixteen patients with biochemically and genetically diagnosed GD3 completed ophthalmologic examination including optical coherence tomography (OCT), clinical oculomotor assessment and saccadometry by infrared based video-oculography. Saccadic peak velocity, gain and latency were compared to 100 healthy controls, using parametric tests. Correlations between saccadic assessment and clinical parameters were calculated. RESULTS: Peripapillary subretinal drusen-like deposits with retinal atrophy (2/16), preretinal opacities of the vitreous (4/16) and increased retinal vessel tortuosity (3/16) were found. Oculomotor pathology with clinically slowed saccades was more frequent horizontally (15/16) than vertically (12/16). Saccadometry revealed slowed peak velocity compared to 100 controls (most evident horizontally and downwards). Saccades were delayed and hypometric. Best correlating with SARA (scale for the assessment and rating of ataxia), disease duration, mSST (modified Severity Scoring Tool) and reduced IQ was peak velocity (both up- and downwards). Motility restriction occurred in 8/16 patients affecting horizontal eye movements, while vertical motility restriction was seen less frequently. Impaired abduction presented with esophoria or esotropia, the latter in combination with reduced stereopsis. CONCLUSIONS: Vitreoretinal lesions may occur in 25% of Gaucher type 3 patients, while we additionally observed subretinal lesions with retinal atrophy in advanced disease stages. Vertical saccadic peak velocity seems the most promising "biomarker" for neuropathic manifestation for future longitudinal studies, as it correlates best with other neurologic symptoms. Apart from the well documented abduction deficit in Gaucher type 3 we were able to demonstrate motility impairment in all directions of gaze.


Asunto(s)
Enfermedad de Gaucher/patología , Degeneración Retiniana/patología , Adolescente , Adulto , Niño , Estudios de Cohortes , Femenino , Humanos , Enfermedades por Almacenamiento Lisosomal/patología , Masculino , Persona de Mediana Edad , Adulto Joven
2.
PLoS One ; 13(9): e0204008, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30226877

RESUMEN

PURPOSE: There is some controversy whether or not saccades change with age. This cross-sectional study aims to clarify the characteristics of reflexive saccades at various ages to establish a normative cohort in a standardized set-up. Second objective is to investigate the feasibility of saccadometry in daily ophthalmological practice. METHODS: One hundred healthy participants aged between 6 and 76 years underwent an ophthalmologic examination and saccadometry, using an infrared video-oculography device, sampling at 220 Hz. The reflexive saccades were evoked in four directions and three target displacements each (5°/15°/30° horizontally and of 5°/10°/20° vertically). Saccadic peak velocity, gain (amplitude/target displacement) and latency were measured. RESULTS: Mean peak velocity of saccades was 213°/s (± 29°/s), 352°/s (± 50°/s) and 455°/s (± 67°/s) to a target position 5°, 15°and 30° horizontally, respectively, and 208°/s (± 36°/s), 303°/s (± 50°/s) and 391°/s (± 71°/s) to a target position 5°, 10° and 20° vertically. The association between peak velocity and eccentricity proved to be present at any age in all four directions. We found no relevant effect of age on peak velocity, gain and latency in a fitted linear mixed model. However, latency becomes shorter during childhood and adolescence, while in adulthood it is relatively stable with a slight trend to increase in the elderly. Saccades are more precise when the target displacement is small. Isometric saccades are most common, followed by hypometric ones. All children and elderly were able to perform good quality saccadometry in a recording time of approximately 10 minutes. CONCLUSION: The presented data may serve as normative control for further studies using such a video-oculography device for saccadometry. The means of peak velocity and the gain can be used independently from age respecting the target displacement. Latency is susceptible to age.


Asunto(s)
Movimientos Sacádicos/fisiología , Adolescente , Adulto , Factores de Edad , Anciano , Niño , Estudios Transversales , Medidas del Movimiento Ocular , Femenino , Fijación Ocular , Humanos , Masculino , Persona de Mediana Edad , Grabación en Video , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...