Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Insect Mol Biol ; 22(2): 155-71, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23294456

RESUMEN

Termites are highly eusocial insects that thrive on recalcitrant materials like wood and soil and thus play important roles in global carbon recycling and also in damaging wooden structures. Termites, such as Reticulitermes flavipes (Rhinotermitidae), owe their success to their ability to extract nutrients from lignocellulose (a major component of wood) with the help of gut-dwelling symbionts. With the aim to gain new insights into this enzymatic process we provided R. flavipes with a complex lignocellulose (wood) or pure cellulose (paper) diet and followed the resulting differential gene expression on a custom oligonucleotide-microarray platform. We identified a set of expressed sequence tags (ESTs) with differential abundance between the two diet treatments and demonstrated the source (host/symbiont) of these genes, providing novel information on termite nutritional symbiosis. Our results reveal: (1) the majority of responsive wood- and paper-abundant ESTs are from host and symbionts, respectively; (2) distinct pathways are associated with lignocellulose and cellulose feeding in both host and symbionts; and (3) sets of diet-responsive ESTs encode putative digestive and wood-related detoxification enzymes. Thus, this study illuminates the dynamics of termite nutritional symbiosis and reveals a pool of genes as potential targets for termite control and functional studies of termite-symbiont interactions.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales/genética , Tracto Gastrointestinal/microbiología , Genoma de los Insectos/genética , Isópteros/fisiología , Animales , Celulosa/metabolismo , Conducta Alimentaria , Perfilación de la Expresión Génica , Lignina/metabolismo , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Papel , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Madera
2.
J Invertebr Pathol ; 112 Suppl: S44-52, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22465629

RESUMEN

The Musca domestica hytrosavirus (MdHV), a member of the family Hyrosaviridae, is a large, dsDNA, enveloped virus that infects adult house flies and causes a diagnostic hypertrophy of the salivary gland. Herein, studies were directed at identifying key structural components of the viral envelope and nucleocapsid. SDS-PAGE of detergent-treated virus fractions identified protein bands unique to the envelope and nucleocapsid components. Using prior LC-MSMS data we identified the viral ORF associated with the major envelope band, cloned and expressed recombinant viral antigens, and prepared a series of polyclonal sera. Western blots confirmed that antibodies recognized the target viral antigen and provided evidence that the viral protein MdHV96 underwent post-translational processing; antibodies bound to the target high molecular weight parent molecule as well as distinct sets of smaller bands. Immuno gold electron microscopy demonstrated that the anti-MdHV96 sera recognized target antigens associated with the envelope. The nucleocapsids migrated from the virogenic stroma in the nucleus through the nuclear membrane into the cytoplasm, where they acquired an initial envelope that contained MdHV96. This major envelope protein, appeared to incorporate into intracellular membranes of both the caniculi and rough endoplasmic reticulum membranes and mediate binding to the nucleocapsids. Oral infection bioassays demonstrated that the anti-HV96 polyclonal sera acted as neutralizing agents in suppressing the levels of orally acquired infections.


Asunto(s)
Virus ADN/metabolismo , Moscas Domésticas/virología , Virus de Insectos/metabolismo , Proteínas del Envoltorio Viral/análisis , Animales , Western Blotting , Virus ADN/inmunología , Moscas Domésticas/inmunología , Inmunohistoquímica , Virus de Insectos/inmunología , Microscopía Electrónica de Transmisión , Nucleocápside/inmunología , Nucleocápside/metabolismo , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo
3.
J Vector Ecol ; 36(2): 231-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22129394

RESUMEN

House flies (Musca domestica) infected with Musca domestica salivary gland hypertrophy virus (MdSGHV) were found in fly populations collected from 12 out of 18 Danish livestock farms that were surveyed in 2007 and 2008. Infection rates ranged from 0.5% to 5% and averaged 1.2%. None of the stable flies (Stomoxys calcitrans), rat-tail maggot flies (Eristalis tenax) or yellow dung flies (Scathophaga stercoraria) collected from MdSGHV-positive farms displayed characteristic salivary gland hypertrophy (SGH). In laboratory transmission tests, SGH symptoms were not observed in stable flies, flesh flies (Sarcophaga bullata), black dump flies (Hydrotaea aenescens), or face flies (Musca autumnalis) that were injected with MdSGHV from Danish house flies. However, in two species (stable fly and black dump fly), virus injection resulted in suppression of ovarian development similar to that observed in infected house flies, and injection of house flies with homogenates prepared from the salivary glands or ovaries of these species resulted in MdSGHV infection of the challenged house flies. Mortality of virus-injected stable flies was the highest among the five species tested. Virulence of Danish and Florida isolates of MdSGHV was similar with three virus delivery protocols, as a liquid food bait (in sucrose, milk, or blood), sprayed onto the flies in a Potter spray tower, or by immersiion in a crude homogenate of infected house flies. The most effective delivery system was immersion in a homogenate of ten infected flies/ml of water, resulting in 56.2% and 49.6% infection of the house flies challenged with the Danish and Florida strains, respectively.


Asunto(s)
Moscas Domésticas/virología , Virus de Insectos/patogenicidad , Glándulas Salivales/virología , Animales , Industria Lechera , Femenino , Hipertrofia/virología , Muscidae/virología , Ovario/virología , Prevalencia , Glándulas Salivales/patología , Sarcofágidos/virología
4.
J Med Entomol ; 48(6): 1128-35, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22238871

RESUMEN

The effect of Musca domestica salivary gland hypertrophy virus (MdSGHV) on selected fitness parameters of stable flies, Stomoxys calcitrans (L.), was examined in the laboratory. Virus-injected stable flies of both genders suffered substantially higher mortality than control flies. By day 9, female mortality was 59.3 +/- 10.1% in the virus group compared with 23.7 +/- 3.7% in the controls; mortality in virus-injected males was 78.1 +/- 3.1% compared with 33.3 +/- 9.3% for controls. Fecundity of control flies on days 6-9 was 49-54 eggs deposited per live female per day (total, 8,996 eggs deposited), whereas virus-injected flies produced four to five eggs per female on days 6-7 and less then one egg per female per day thereafter (total, 251 eggs). Fecal spot deposition by virus-injected flies was comparable to controls initially but decreased to approximately 50% of control levels by day 4 after injection; infected flies produced only 26% as many fecal spots as healthy flies on days 6 and 7. None of the virus-injected stable flies developed symptoms of salivary gland hypertrophy. Quantitative real-time polymerase chain reaction demonstrated virus replication in injected stable flies, with increasing titers of virus genome copies from one to four days after injection. MdSGHV in stable flies displayed tissue tropism similar to that observed in house fly hosts, with higher viral copy numbers in fat body and salivary glands compared with ovaries. Virus titers were approximately 2 orders of magnitude higher in house fly than in stable fly hosts, and this difference was probably due to the absence of salivary gland hypertrophy in the latter species.


Asunto(s)
Especificidad del Huésped , Virus de Insectos/fisiología , Muscidae/virología , Animales , Cuerpo Adiposo/virología , Femenino , Masculino , Ovario/virología , Glándulas Salivales/virología , Tropismo Viral , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...