Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 11: 1253, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625182

RESUMEN

Horizontal gene transfer is a major driver of bacterial evolution and adaptation to environmental stresses, occurring notably via transformation of naturally competent organisms. The Deinococcus radiodurans bacterium, characterized by its extreme radioresistance, is also naturally competent. Here, we investigated the role of D. radiodurans players involved in different steps of natural transformation. First, we identified the factors (PilQ, PilD, type IV pilins, PilB, PilT, ComEC-ComEA, and ComF) involved in DNA uptake and DNA translocation across the external and cytoplasmic membranes and showed that the DNA-uptake machinery is similar to that described in the Gram negative bacterium Vibrio cholerae. Then, we studied the involvement of recombination and DNA repair proteins, RecA, RecF, RecO, DprA, and DdrB into the DNA processing steps of D. radiodurans transformation by plasmid and genomic DNA. The transformation frequency of the cells devoid of DprA, a highly conserved protein among competent species, strongly decreased but was not completely abolished whereas it was completely abolished in ΔdprA ΔrecF, ΔdprA ΔrecO, and ΔdprA ΔddrB double mutants. We propose that RecF and RecO, belonging to the recombination mediator complex, and DdrB, a specific deinococcal DNA binding protein, can replace a function played by DprA, or alternatively, act at a different step of recombination with DprA. We also demonstrated that a ΔdprA mutant is as resistant as wild type to various doses of γ-irradiation, suggesting that DprA, and potentially transformation, do not play a major role in D. radiodurans radioresistance.

2.
Nat Commun ; 10(1): 3967, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481669

RESUMEN

N6-threonyl-carbamoylation of adenosine 37 of ANN-type tRNAs (t6A) is a universal modification essential for translational accuracy and efficiency. The t6A pathway uses two sequentially acting enzymes, YRDC and OSGEP, the latter being a subunit of the multiprotein KEOPS complex. We recently identified mutations in genes encoding four out of the five KEOPS subunits in children with Galloway-Mowat syndrome (GAMOS), a clinically heterogeneous autosomal recessive disease characterized by early-onset steroid-resistant nephrotic syndrome and microcephaly. Here we show that mutations in YRDC cause an extremely severe form of GAMOS whereas mutations in GON7, encoding the fifth KEOPS subunit, lead to a milder form of the disease. The crystal structure of the GON7/LAGE3/OSGEP subcomplex shows that the intrinsically disordered GON7 protein becomes partially structured upon binding to LAGE3. The structure and cellular characterization of GON7 suggest its involvement in the cellular stability and quaternary arrangement of the KEOPS complex.


Asunto(s)
Adenosina/análogos & derivados , Proteínas de Unión al GTP/genética , Hernia Hiatal/genética , Proteínas Intrínsecamente Desordenadas/genética , Microcefalia/genética , Nefrosis/genética , Proteínas Nucleares/genética , ARN de Transferencia/genética , Proteínas de Unión al ARN/genética , Adenosina/genética , Niño , Femenino , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Masculino , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo
4.
Nucleic Acids Res ; 46(11): 5850-5860, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29741707

RESUMEN

The universal N6-threonylcarbamoyladenosine (t6A) modification at position A37 of ANN-decoding tRNAs is essential for translational fidelity. In bacteria the TsaC enzyme first synthesizes an l-threonylcarbamoyladenylate (TC-AMP) intermediate. In cooperation with TsaB and TsaE, TsaD then transfers the l-threonylcarbamoyl-moiety from TC-AMP onto tRNA. We determined the crystal structure of the TsaB-TsaE-TsaD (TsaBDE) complex of Thermotoga maritima in presence of a non-hydrolysable AMPCPP. TsaE is positioned at the entrance of the active site pocket of TsaD, contacting both the TsaB and TsaD subunits and prohibiting simultaneous tRNA binding. AMPCPP occupies the ATP binding site of TsaE and is sandwiched between TsaE and TsaD. Unexpectedly, the binding of TsaE partially denatures the active site of TsaD causing loss of its essential metal binding sites. TsaE interferes in a pre- or post-catalytic step and its binding to TsaBD is regulated by ATP hydrolysis. This novel binding mode and activation mechanism of TsaE offers good opportunities for antimicrobial drug development.


Asunto(s)
Adenosina/análogos & derivados , Proteínas Bacterianas/química , ARN de Transferencia/metabolismo , Thermotoga maritima/enzimología , Adenosina/biosíntesis , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Proteínas Arqueales/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Enzimas/química , Enzimas/metabolismo , Modelos Moleculares , Conformación Proteica , Estructura Cuaternaria de Proteína , ARN de Transferencia/química
5.
RNA ; 24(7): 926-938, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29650678

RESUMEN

N6-threonyl-carbamoyl adenosine (t6A) is a universal tRNA modification found at position 37, next to the anticodon, in almost all tRNAs decoding ANN codons (where N = A, U, G, or C). t6A stabilizes the codon-anticodon interaction and hence promotes translation fidelity. The first step of the biosynthesis of t6A, the production of threonyl-carbamoyl adenylate (TC-AMP), is catalyzed by the Sua5/TsaC family of enzymes. While TsaC is a single domain protein, Sua5 enzymes are composed of the TsaC-like domain, a linker and an extra domain called SUA5 of unknown function. In the present study, we report structure-function analysis of Pyrococcus abyssi Sua5 (Pa-Sua5). Crystallographic data revealed binding sites for bicarbonate substrate and pyrophosphate product. The linker of Pa-Sua5 forms a loop structure that folds into the active site gorge and closes it. Using structure-guided mutational analysis, we established that the conserved sequence motifs in the linker and the domain-domain interface are essential for the function of Pa-Sua5. We propose that the linker participates actively in the biosynthesis of TC-AMP by binding to ATP/PPi and by stabilizing the N-carboxy-l-threonine intermediate. Hence, TsaC orthologs which lack such a linker and SUA5 domain use a different mechanism for TC-AMP synthesis.


Asunto(s)
Adenosina/análogos & derivados , Proteínas Arqueales/química , Pyrococcus abyssi/enzimología , ARN de Transferencia/metabolismo , Adenosina/biosíntesis , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Modelos Moleculares , Mutación , Conformación Proteica , Dominios Proteicos , ARN de Transferencia/química , Relación Estructura-Actividad
6.
Nat Genet ; 49(10): 1529-1538, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28805828

RESUMEN

Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.


Asunto(s)
Hernia Hiatal/genética , Microcefalia/genética , Complejos Multiproteicos/genética , Mutación , Nefrosis/genética , Animales , Apoptosis/genética , Sistemas CRISPR-Cas , Proteínas Portadoras/genética , Movimiento Celular , Citoesqueleto/ultraestructura , Reparación del ADN/genética , Estrés del Retículo Endoplásmico/genética , Técnicas de Inactivación de Genes , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Metaloendopeptidasas/deficiencia , Metaloendopeptidasas/genética , Ratones , Modelos Moleculares , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología , Podocitos/metabolismo , Podocitos/ultraestructura , Conformación Proteica , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/metabolismo , Homeostasis del Telómero/genética , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
8.
Nucleic Acids Res ; 43(22): 10989-1002, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26438534

RESUMEN

Most of the factors involved in translation (tRNA, rRNA and proteins) are subject to post-transcriptional and post-translational modifications, which participate in the fine-tuning and tight control of ribosome and protein synthesis processes. In eukaryotes, Trm112 acts as an obligate activating platform for at least four methyltransferases (MTase) involved in the modification of 18S rRNA (Bud23), tRNA (Trm9 and Trm11) and translation termination factor eRF1 (Mtq2). Trm112 is then at a nexus between ribosome synthesis and function. Here, we present a structure-function analysis of the Trm9-Trm112 complex, which is involved in the 5-methoxycarbonylmethyluridine (mcm(5)U) modification of the tRNA anticodon wobble position and hence promotes translational fidelity. We also compare the known crystal structures of various Trm112-MTase complexes, highlighting the structural plasticity allowing Trm112 to interact through a very similar mode with its MTase partners, although those share less than 20% sequence identity.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , ARNt Metiltransferasas/química , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Yarrowia/enzimología , ARNt Metiltransferasas/metabolismo
9.
Nucleic Acids Res ; 42(11): 7395-408, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24782530

RESUMEN

Natural transformation is a major mechanism of horizontal gene transfer in bacteria that depends on DNA recombination. RecA is central to the homologous recombination pathway, catalyzing DNA strand invasion and homology search. DprA was shown to be a key binding partner of RecA acting as a specific mediator for its loading on the incoming exogenous ssDNA. Although the 3D structures of both RecA and DprA have been solved, the mechanisms underlying their cross-talk remained elusive. By combining molecular docking simulations and experimental validation, we identified a region on RecA, buried at its self-assembly interface and involving three basic residues that contact an acidic triad of DprA previously shown to be crucial for the interaction. At the core of these patches, (DprA)M238 and (RecA)F230 are involved in the interaction. The other DprA binding regions of RecA could involve the N-terminal α-helix and a DNA-binding region. Our data favor a model of DprA acting as a cap of the RecA filament, involving a DprA-RecA interplay at two levels: their own oligomeric states and their respective interaction with DNA. Our model forms the basis for a mechanistic explanation of how DprA can act as a mediator for the loading of RecA on ssDNA.


Asunto(s)
Proteínas Bacterianas/química , ADN de Cadena Simple/metabolismo , Proteínas de la Membrana/química , Rec A Recombinasas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Evolución Molecular , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Rec A Recombinasas/metabolismo , Streptococcus pneumoniae
10.
RNA ; 18(10): 1833-45, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22923768

RESUMEN

The AAA+ ATPases pontin and reptin function in a staggering array of cellular processes including chromatin remodeling, transcriptional regulation, DNA damage repair, and assembly of macromolecular complexes, such as RNA polymerase II and small nucleolar (sno) RNPs. However, the molecular mechanism for all of these AAA+ ATPase associated activities is unknown. Here we document that, during the biogenesis of H/ACA RNPs (including telomerase), the assembly factor SHQ1 holds the pseudouridine synthase NAP57/dyskerin in a viselike grip, and that pontin and reptin (as components of the R2TP complex) are required to pry NAP57 from SHQ1. Significantly, the NAP57 domain captured by SHQ1 harbors most mutations underlying X-linked dyskeratosis congenita (X-DC) implicating the interface between the two proteins as a target of this bone marrow failure syndrome. Homing in on the essential first steps of H/ACA RNP biogenesis, our findings provide the first insight into the mechanism of action of pontin and reptin in the assembly of macromolecular complexes.


Asunto(s)
Proteínas Portadoras/fisiología , ADN Helicasas/fisiología , Sustancias Macromoleculares/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/biosíntesis , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/fisiología , Animales , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , ADN Helicasas/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Células HeLa , Humanos , Ratones , Modelos Biológicos , Multimerización de Proteína/genética , Multimerización de Proteína/fisiología , ARN Interferente Pequeño/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología
11.
Biochimie ; 94(7): 1533-43, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22266024

RESUMEN

During protein synthesis, release of polypeptide from the ribosome occurs when an in frame termination codon is encountered. Contrary to sense codons, which are decoded by tRNAs, stop codons present in the A-site are recognized by proteins named class I release factors, leading to the release of newly synthesized proteins. Structures of these factors bound to termination ribosomal complexes have recently been obtained, and lead to a better understanding of stop codon recognition and its coordination with peptidyl-tRNA hydrolysis in bacteria. Release factors contain a universally conserved GGQ motif which interacts with the peptidyl-transferase centre to allow peptide release. The Gln side chain from this motif is methylated, a feature conserved from bacteria to man, suggesting an important biological role. However, methylation is catalysed by completely unrelated enzymes. The function of this motif and its post-translational modification will be discussed in the context of recent structural and functional studies.


Asunto(s)
Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Animales , Humanos , Metilación , ARNt Metiltransferasas/metabolismo
12.
Genes Dev ; 25(22): 2398-408, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22085966

RESUMEN

SHQ1 is an essential assembly factor for H/ACA ribonucleoproteins (RNPs) required for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. SHQ1 binds dyskerin/NAP57, the catalytic subunit of human H/ACA RNPs, and this interaction is modulated by mutations causing X-linked dyskeratosis congenita. We report the crystal structure of the C-terminal domain of yeast SHQ1, Shq1p, and its complex with yeast dyskerin/NAP57, Cbf5p, lacking its catalytic domain. The C-terminal domain of Shq1p interacts with the RNA-binding domain of Cbf5p and, through structural mimicry, uses the RNA-protein-binding sites to achieve a specific protein-protein interface. We propose that Shq1p operates as a Cbf5p chaperone during RNP assembly by acting as an RNA placeholder, thereby preventing Cbf5p from nonspecific RNA binding before association with an H/ACA RNA and the other core RNP proteins.


Asunto(s)
Modelos Moleculares , Imitación Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Supervivencia Celular , Humanos , Hidroliasas/química , Hidroliasas/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Proteínas Nucleares/genética , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , ARN de Hongos/metabolismo , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
13.
Nucleic Acids Res ; 39(14): 6249-59, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21478168

RESUMEN

Methylation is a common modification encountered in DNA, RNA and proteins. It plays a central role in gene expression, protein function and mRNA translation. Prokaryotic and eukaryotic class I translation termination factors are methylated on the glutamine of the essential and universally conserved GGQ motif, in line with an important cellular role. In eukaryotes, this modification is performed by the Mtq2-Trm112 holoenzyme. Trm112 activates not only the Mtq2 catalytic subunit but also two other tRNA methyltransferases (Trm9 and Trm11). To understand the molecular mechanisms underlying methyltransferase activation by Trm112, we have determined the 3D structure of the Mtq2-Trm112 complex and mapped its active site. Using site-directed mutagenesis and in vivo functional experiments, we show that this structure can also serve as a model for the Trm9-Trm112 complex, supporting our hypothesis that Trm112 uses a common strategy to activate these three methyltransferases.


Asunto(s)
Proteína Metiltransferasas/química , Subunidades de Proteína/química , Dominio Catalítico , Cristalografía , Activación Enzimática , Proteínas Fúngicas/química , Eliminación de Gen , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Biosíntesis de Proteínas , Proteína Metiltransferasas/genética , Subunidades de Proteína/genética , S-Adenosilmetionina/química , Proteínas de Saccharomyces cerevisiae/genética , ARNt Metiltransferasas/genética
14.
Methods Mol Biol ; 363: 21-37, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17272835

RESUMEN

The South-Paris Yeast Structural Genomics Pilot Project (http://www.genomics.eu.org) aims at systematically expressing, purifying, and determining the three-dimensional structures of Saccharomyces cerevisiae proteins. We have already cloned 240 yeast open reading frames in the Escherichia coli pET system. Eighty-two percent of the targets can be expressed in E. coli, and 61% yield soluble protein. We have currently purified 58 proteins. Twelve X-ray structures have been solved, six are in progress, and six other proteins gave crystals. In this chapter, we present the general experimental flowchart applied for this project. One of the main difficulties encountered in this pilot project was the low solubility of a great number of target proteins. We have developed parallel strategies to recover these proteins from inclusion bodies, including refolding, coexpression with chaperones, and an in vitro expression system. A limited proteolysis protocol, developed to localize flexible regions in proteins that could hinder crystallization, is also described.


Asunto(s)
Proteínas/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Biología Computacional , Cristalización , Genómica , Péptido Hidrolasas/metabolismo , Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
J Biol Chem ; 281(40): 30175-85, 2006 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-16857670

RESUMEN

Despite the generation of a large amount of sequence information over the last decade, more than 40% of well characterized enzymatic functions still lack associated protein sequences. Assigning protein sequences to documented biochemical functions is an interesting challenge. We illustrate here that structural genomics may be a reasonable approach in addressing these questions. We present the crystal structure of the Saccharomyces cerevisiae YMR099cp, a protein of unknown function. YMR099cp adopts the same fold as galactose mutarotase and shares the same catalytic machinery necessary for the interconversion of the alpha and beta anomers of galactose. The structure revealed the presence in the active site of a sulfate ion attached by an arginine clamp made by the side chain from two strictly conserved arginine residues. This sulfate is ideally positioned to mimic the phosphate group of hexose 6-phosphate. We have subsequently successfully demonstrated that YMR099cp is a hexose-6-phosphate mutarotase with broad substrate specificity. We solved high resolution structures of some substrate enzyme complexes, further confirming our functional hypothesis. The metabolic role of a hexose-6-phosphate mutarotase is discussed. This work illustrates that structural information has been crucial to assign YMR099cp to the orphan EC activity: hexose-phosphate mutarotase.


Asunto(s)
Carbohidrato Epimerasas/genética , Hexosafosfatos/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Hexosafosfatos/metabolismo , Datos de Secuencia Molecular , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato/genética
16.
Biochimie ; 87(12): 1041-7, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16226833

RESUMEN

We have determined the three-dimensional crystal structure of the protein encoded by the open reading frame YFL030w from Saccharomyces cerevisiae to a resolution of 2.6 A using single wavelength anomalous diffraction. YFL030w is a 385 amino-acid protein with sequence similarity to the aminotransferase family. The structure of the protein reveals a homodimer adopting the fold-type I of pyridoxal 5'-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure. The protein shows close structural resemblance with the human alanine:glyoxylate aminotransferase (EC 2.6.1.44), an enzyme involved in the hereditary kidney stone disease primary hyperoxaluria type 1. In this paper we show that YFL030w codes for an alanine:glyoxylate aminotransferase, highly specific for its amino donor and acceptor substrates.


Asunto(s)
Saccharomyces cerevisiae/enzimología , Transaminasas/química , Transaminasas/metabolismo , Conformación de Carbohidratos , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Difracción de Rayos X
17.
Proteins ; 60(4): 778-86, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16021630

RESUMEN

In the Pseudomonas bacterial genomes, the PhzF proteins are involved in the production of phenazine derivative antibiotic and antifungal compounds. The PhzF superfamily however also encompasses proteins in all genomes from bacteria to eukaryotes, for which no function has been assigned. We have determined the three dimensional crystal structure at 2.05 A resolution of YHI9, the yeast member of the PhzF family. YHI9 has a fold similar to bacterial diaminopimelate epimerase, revealing a bimodular structure with an internal symmetry. Residue conservation identifies a putative active site at the interface between the two domains. Evolution of this protein by gene duplication, gene fusion and domain swapping from an ancestral gene containing the "hot dog" fold, identifies the protein as a "kinked double hot dog" fold.


Asunto(s)
Isomerasas de Aminoácido/química , Proteínas de Saccharomyces cerevisiae/química , Isomerasas de Aminoácido/genética , Isomerasas de Aminoácido/aislamiento & purificación , Cristalografía por Rayos X , Modelos Moleculares , Reacción en Cadena de la Polimerasa , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
18.
Acta Crystallogr D Biol Crystallogr ; 61(Pt 6): 664-70, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15930617

RESUMEN

Crystallization has long been regarded as one of the major bottlenecks in high-throughput structural determination by X-ray crystallography. Structural genomics projects have addressed this issue by using robots to set up automated crystal screens using nanodrop technology. This has moved the bottleneck from obtaining the first crystal hit to obtaining diffraction-quality crystals, as crystal optimization is a notoriously slow process that is difficult to automatize. This article describes the high-throughput optimization strategies used in the Yeast Structural Genomics project, with selected successful examples.


Asunto(s)
Cristalografía por Rayos X/métodos , Genómica/métodos , Robótica/métodos , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Cristalografía por Rayos X/instrumentación , Genómica/instrumentación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
19.
Acta Crystallogr D Biol Crystallogr ; 61(Pt 6): 671-8, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15930618

RESUMEN

Structural genomics aims at the establishment of a universal protein-fold dictionary through systematic structure determination either by NMR or X-ray crystallography. In order to catch up with the explosive amount of protein sequence data, the structural biology laboratories are spurred to increase the speed of the structure-determination process. To achieve this goal, high-throughput robotic approaches are increasingly used in all the steps leading from cloning to data collection and even structure interpretation is becoming more and more automatic. The progress made in these areas has begun to have a significant impact on the more 'classical' structural biology laboratories, dramatically increasing the number of individual experiments. This automation creates the need for efficient data management. Here, a new piece of software, HalX, designed as an 'electronic lab book' that aims at (i) storage and (ii) easy access and use of all experimental data is presented. This should lead to much improved management and tracking of structural genomics experimental data.


Asunto(s)
Bases de Datos de Proteínas , Programas Informáticos , Cristalografía por Rayos X/métodos
20.
Biochimie ; 86(9-10): 617-23, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15556271

RESUMEN

We present here the outlines and results from our yeast structural genomics (YSG) pilot-project. A lab-scale platform for the systematic production and structure determination is presented. In order to validate this approach, 250 non-membrane proteins of unknown structure were targeted. Strategies and final statistics are evaluated. We finally discuss the opportunity of structural genomics programs to contribute to functional biochemical annotation.


Asunto(s)
Genómica , Saccharomyces cerevisiae/genética , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...