Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Photochem Photobiol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849970

RESUMEN

Resistance to platinum-based chemotherapies remains a significant challenge in advanced-stage high-grade serous ovarian carcinoma, and patients with malignant ascites face the poorest outcomes. It is, therefore, important to understand the effects of ascites, including the associated fluid shear stress (FSS), on phenotypic changes and therapy response, specifically FSS-induced chemotherapy resistance and the underlying mechanisms in ovarian cancer. This study investigated the effects of FSS on response to cisplatin, a platinum-based chemotherapy, and doxorubicin, an anthracycline, both of which are commonly used to manage advanced-stage ovarian cancer. Consistent with prior research, OVCAR-3 and Caov-3 cells cultivated under FSS demonstrated significant resistance to cisplatin. Examination of the role of mitochondria revealed an increase in mitochondrial DNA copy number and intracellular ATP content in cultures grown under FSS, suggesting that changes in mitochondria number and metabolic activity may contribute to platinum resistance. Interestingly, no resistance to doxorubicin was observed under FSS, the first such observation of a lack of resistance under these conditions. Finally, this study demonstrated the potential of photodynamic priming using benzoporphyrin derivative, a clinically approved photosensitizer that localizes in part to mitochondria and endoplasmic reticula, to enhance the efficacy of cisplatin, but not doxorubicin, thereby overcoming FSS-induced platinum resistance.

2.
Anal Bioanal Chem ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38811407

RESUMEN

Optical biosensors have employed at least three distinct system architectures over the last 40 years, moving from "sample in-answer out" systems to completely embedding the optical biosensor into the sample to embedding the recognition module in the sample and optically interrogating the recognition module from outside of the sample. This trends article provides an overview of the evolution of these three system architectures and discusses how each architecture has been applied to solve the measurement challenges of a wide variety of applications. A fourth biosensor system architecture, that of an "autonomous" biosensor which "takes the user out of the loop" while both detecting target analytes and responding to that measurement, is currently under development for applications initially including environmental cleanup and "smart therapeutics." As is the case in many other areas of technology, it will be profoundly interesting to observe the further development and application of elegant, simpler (optical) biosensor systems to address tomorrow's measurement needs.

3.
Front Pharmacol ; 15: 1348172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38344174

RESUMEN

Introduction: One major obstacle in validating drugs for the treatment or prevention of hearing loss is the limited data available on the distribution and concentration of drugs in the human inner ear. Although small animal models offer some insights into inner ear pharmacokinetics, their smaller organ size and different barrier (round window membrane) permeabilities compared to humans can complicate study interpretation. Therefore, developing a reliable large animal model for inner ear drug delivery is crucial. The inner and middle ear anatomy of domestic pigs closely resembles that of humans, making them promising candidates for studying inner ear pharmacokinetics. However, unlike humans, the anatomical orientation and tortuosity of the porcine external ear canal frustrates local drug delivery to the inner ear. Methods: In this study, we developed a surgical technique to access the tympanic membrane of pigs. To assess hearing pre- and post-surgery, auditory brainstem responses to click and pure tones were measured. Additionally, we performed 3D segmentation of the porcine inner ear images and used this data to simulate the diffusion of dexamethasone within the inner ear through fluid simulation software (FluidSim). Results: We have successfully delivered dexamethasone and dexamethasone sodium phosphate to the porcine inner ear via the intratympanic injection. The recorded auditory brainstem measurements revealed no adverse effects on hearing thresholds attributable to the surgery. We have also simulated the diffusion rates for dexamethasone and dexamethasone sodium phosphate into the porcine inner ear and confirmed the accuracy of the simulations using in-vivo data. Discussion: We have developed and characterized a method for conducting pharmacokinetic studies of the inner ear using pigs. This animal model closely mirrors the size of the human cochlea and the thickness of its barriers. The diffusion time and drug concentrations we reported align closely with the limited data available from human studies. Therefore, we have demonstrated the potential of using pigs as a large animal model for studying inner ear pharmacokinetics.

4.
Environ Health ; 22(1): 87, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098045

RESUMEN

BACKGROUND: Exposure to per- and poly-fluoroalkyl substances (PFAS) has been associated with significant alterations in female reproductive health. These include changes in menstrual cyclicity, timing of menarche and menopause, and fertility outcomes, as well as increased risk of endometriosis, all of which may contribute to an increased risk of endometrial cancer. The effect of PFAS on endometrial cancer cells, specifically altered treatment response and biology, however, remains poorly studied. Like other gynecologic malignancies, a key contributor to lethality in endometrial cancer is resistance to chemotherapeutics, specifically to platinum-based agents that are used as the standard of care for patients with advanced-stage and/or recurrent disease. OBJECTIVES: To explore the effect of environmental exposures, specifically PFAS, on platinum-based chemotherapy response and mitochondrial function in endometrial cancer. METHODS: HEC-1 and Ishikawa endometrial cancer cells were exposed to sub-cytotoxic nanomolar and micromolar concentrations of PFAS/PFAS mixtures and were treated with platinum-based chemotherapy. Survival fraction was measured 48-h post-chemotherapy treatment. Mitochondrial membrane potential was evaluated in both cell lines following exposure to PFAS ± chemotherapy treatment. RESULTS: HEC-1 and Ishikawa cells displayed differing outcomes after PFAS exposure and chemotherapy treatment. Cells exposed to PFAS appeared to be less sensitive to carboplatin, with instances of increased survival fraction, indicative of platinum resistance, observed in HEC-1 cells. In Ishikawa cells treated with cisplatin, PFAS mixture exposure significantly decreased survival fraction. In both cell lines, increases in mitochondrial membrane potential were observed post-PFAS exposure ± chemotherapy treatment. DISCUSSION: Exposure of endometrial cancer cell lines to PFAS/PFAS mixtures had varying effects on response to platinum-based chemotherapies. Increased survival fraction post-PFAS + carboplatin treatment suggests platinum resistance, while decreased survival fraction post-PFAS mixture + cisplatin exposure suggests enhanced therapeutic efficacy. Regardless of chemotherapy sensitivity status, mitochondrial membrane potential findings suggest that PFAS exposure may affect endometrial cancer cell mitochondrial functioning and should be explored further.


Asunto(s)
Neoplasias Endometriales , Fluorocarburos , Femenino , Humanos , Carboplatino/toxicidad , Carboplatino/uso terapéutico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Platino (Metal)/uso terapéutico , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/inducido químicamente , Línea Celular
5.
PNAS Nexus ; 2(10): pgad313, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37829844

RESUMEN

Time-resolved techniques have been widely used in time-gated and luminescence lifetime imaging. However, traditional time-resolved systems require expensive lab equipment such as high-speed excitation sources and detectors or complicated mechanical choppers to achieve high repetition rates. Here, we present a cost-effective and miniaturized smartphone lifetime imaging system integrated with a pulsed ultraviolet (UV) light-emitting diode (LED) for 2D luminescence lifetime imaging using a videoscopy-based virtual chopper (V-chopper) mechanism combined with machine learning. The V-chopper method generates a series of time-delayed images between excitation pulses and smartphone gating so that the luminescence lifetime can be measured at each pixel using a relatively low acquisition frame rate (e.g. 30 frames per second [fps]) without the need for excitation synchronization. Europium (Eu) complex dyes with different luminescent lifetimes ranging from microseconds to seconds were used to demonstrate and evaluate the principle of V-chopper on a 3D-printed smartphone microscopy platform. A convolutional neural network (CNN) model was developed to automatically distinguish the gated images in different decay cycles with an accuracy of >99.5%. The current smartphone V-chopper system can detect lifetime down to ∼75 µs utilizing the default phase shift between the smartphone video rate and excitation pulses and in principle can detect much shorter lifetimes by accurately programming the time delay. This V-chopper methodology has eliminated the need for the expensive and complicated instruments used in traditional time-resolved detection and can greatly expand the applications of time-resolved lifetime technologies.

6.
iScience ; 26(6): 106789, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37213232

RESUMEN

Delivery of pharmaceutical therapeutics to the inner ear to treat and prevent hearing loss is challenging. Systemic delivery is not effective as only a small fraction of the therapeutic agent reaches the inner ear. Invasive surgeries to inject through the round window membrane (RWM) or cochleostomy may cause damage to the inner ear. An alternative approach is to administer drugs into the middle ear using an intratympanic injection, with the drugs primarily passing through the RWM to the inner ear. However, the RWM is a barrier, only permeable to a small number of molecules. To study and enhance the RWM permeability, we developed an ex vivo porcine RWM model, similar in structure and thickness to the human RWM. The model is viable for days, and drug passage can be measured at multiple time points. This model provides a straightforward approach to developing effective and non-invasive delivery methods to the inner ear.

7.
STAR Protoc ; 4(2): 102220, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37060559

RESUMEN

The inner ear of humans and large animals is embedded in a thick and dense bone that makes dissection challenging. Here, we present a protocol that enables three-dimensional (3D) characterization of intact inner ears from large-animal models. We describe steps for decalcifying bone, using solvents to remove color and lipids, and imaging tissues in 3D using confocal and light sheet microscopy. We then detail a pipeline to count hair cells in antibody-stained and 3D imaged cochleae using open-source software. For complete details on the use and execution of this protocol, please refer to (Moatti et al., 2022).1.

8.
Front Chem ; 10: 983523, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238093

RESUMEN

Monitoring and measurement of carbon dioxide (CO2) is critical for many fields. The gold standard CO2 sensor, the Severinghaus electrode, has remained unchanged for decades. In recent years, many other CO2 sensor formats, such as detection based upon pH-sensitive dyes, have been demonstrated, opening the door for relatively simple optical detection schemes. However, a majority of these optochemical sensors require complex sensor preparation steps and are difficult to control and repeatably execute. Here, we report a facile CO2 sensor generation method that suffers from none of the typical fabrication issues. The method described here utilizes polydimethylsiloxane (PDMS) as the flexible sensor matrix and 1-hydroxypyrene-3,6,8-trisulfonate (HPTS), a pH-sensitive dye, as the sensing material. HPTS, a base (NaOH), and glycerol are loaded as dense droplets into a thin PDMS layer which is subsequently cured around the droplet. The fabrication process does not require prior knowledge in chemistry or device fabrication and can be completed as quickly as PDMS cures (∼2 h). We demonstrate the application of this thin-patch sensor for in-line CO2 quantification in cell culture media. To this end, we optimized the sensing composition and quantified CO2 in the range of 0-20 kPa. A standard curve was generated with high fidelity (R 2 = 0.998) along with an analytical resolution of 0.5 kPa (3.7 mm Hg). Additionally, the sensor is fully autoclavable for applications requiring sterility and has a long working lifetime. This flexible, simple-to-manufacture sensor has a myriad of potential applications and represents a new, straightforward means for optical carbon dioxide measurement.

9.
iScience ; 25(8): 104695, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35865132

RESUMEN

Over 11% of the world's population experience hearing loss. Although there are promising studies to restore hearing in rodent models, the size, ontogeny, genetics, and frequency range of hearing of most rodents' cochlea do not match that of humans. The porcine cochlea can bridge this gap as it shares many anatomical, physiological, and genetic similarities with its human counterpart. Here, we provide a detailed methodology to process and image the porcine cochlea in 3D using tissue clearing and light-sheet microscopy. The resulting 3D images can be employed to compare cochleae across different ages and conditions, investigate the ontogeny of cochlear cytoarchitecture, and produce quantitative expression maps of LGR5, a marker of cochlear progenitors in mice. These data reveal that hair cell organization, inner ear morphology, cellular cartography in the organ of Corti, and spatiotemporal expression of LGR5 are dynamic over developmental stages in a pattern not previously documented.

10.
Nat Biotechnol ; 40(8): 1250-1258, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35332339

RESUMEN

Despite their clinical success, chimeric antigen receptor (CAR)-T cell therapies for B cell malignancies are limited by lengthy, costly and labor-intensive ex vivo manufacturing procedures that might lead to cell products with heterogeneous composition. Here we describe an implantable Multifunctional Alginate Scaffold for T Cell Engineering and Release (MASTER) that streamlines in vivo CAR-T cell manufacturing and reduces processing time to a single day. When seeded with human peripheral blood mononuclear cells and CD19-encoding retroviral particles, MASTER provides the appropriate interface for viral vector-mediated gene transfer and, after subcutaneous implantation, mediates the release of functional CAR-T cells in mice. We further demonstrate that in vivo-generated CAR-T cells enter the bloodstream and control distal tumor growth in a mouse xenograft model of lymphoma, showing greater persistence than conventional CAR-T cells. MASTER promises to transform CAR-T cell therapy by fast-tracking manufacture and potentially reducing the complexity and resources needed for provision of this type of therapy.


Asunto(s)
Antígenos CD19 , Leucocitos Mononucleares , Animales , Linfocitos B , Humanos , Inmunoterapia Adoptiva/métodos , Leucocitos Mononucleares/metabolismo , Ratones , Receptores de Antígenos de Linfocitos T , Linfocitos T
11.
Biofabrication ; 14(2)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34991082

RESUMEN

Efficient delivery of oxygen and nutrients to tissues requires an intricate balance of blood, lymphatic, and interstitial fluid pressures (IFPs), and gradients in fluid pressure drive the flow of blood, lymph, and interstitial fluid through tissues. While specific fluid mechanical stimuli, such as wall shear stress, have been shown to modulate cellular signaling pathways along with gene and protein expression patterns, an understanding of the key signals imparted by flowing fluid and how these signals are integrated across multiple cells and cell types in native tissues is incomplete due to limitations with current assays. Here, we introduce a multi-layer microfluidic platform (MµLTI-Flow) that enables the culture of engineered blood and lymphatic microvessels and independent control of blood, lymphatic, and IFPs. Using optical microscopy methods to measure fluid velocity for applied input pressures, we demonstrate varying rates of interstitial fluid flow as a function of blood, lymphatic, and interstitial pressure, consistent with computational fluid dynamics (CFD) models. The resulting microfluidic and computational platforms will provide for analysis of key fluid mechanical parameters and cellular mechanisms that contribute to diseases in which fluid imbalances play a role in progression, including lymphedema and solid cancer.


Asunto(s)
Vasos Linfáticos , Microfluídica , Microfluídica/métodos , Estrés Mecánico
12.
Sci Adv ; 7(41): eabg5841, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34613775

RESUMEN

Regional delivery of chimeric antigen receptor (CAR) T cells in glioblastoma represents a rational therapeutic approach as an alternative to intravenous administration to avoid the blood-brain barrier impediment. Here, we developed a fibrin gel that accommodates CAR-T cell loading and promotes their gradual release. Using a model of subtotal glioblastoma resection, we demonstrated that the fibrin-based gel delivery of CAR-T cells within the surgical cavity enables superior antitumor activity compared to CAR-T cells directly inoculated into the tumor resection cavity.

13.
Colloids Surf B Biointerfaces ; 204: 111805, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33964527

RESUMEN

Chronic wounds can occur when the healing process is disrupted and the wound remains in a prolonged inflammatory stage that leads to severe tissue damage and poor healing outcomes. Clinically used treatments, such as high density, FDA-approved fibrin sealants, do not provide an optimal environment for native cell proliferation and subsequent tissue regeneration. Therefore, new treatments outside the confines of these conventional fibrin bulk gel therapies are required. We have previously developed flowable, low-density fibrin nanoparticles that, when coupled to keratinocyte growth factor, promote cell migration and epithelial wound closure in vivo. Here, we report a new high throughput method for generating the fibrin nanoparticles using probe sonication, which is less time intensive than the previously reported microfluidic method, and investigate the ability of the sonicated fibrin nanoparticles (SFBN) to promote clot formation and cell migration in vitro. The SFBNs can form a fibrin gel when combined with fibrinogen in the absence of exogenous thrombin, and the polymerization rate and fiber density in these fibrin clots is tunable based on SFBN concentration. Furthermore, fibrin gels made with SFBNs support cell migration in an in vitro angiogenic sprouting assay, which is relevant for wound healing. In this report, we show that SFBNs may be a promising wound healing therapy that can be easily produced and delivered in a flowable formulation.


Asunto(s)
Fibrina , Nanopartículas , Adhesivo de Tejido de Fibrina , Polimerizacion , Cicatrización de Heridas
14.
ACS Sens ; 6(3): 985-994, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33656335

RESUMEN

The ability to measure microtissue contraction in vitro can provide important information when modeling cardiac, cardiovascular, respiratory, digestive, dermal, and skeletal tissues. However, measuring tissue contraction in vitro often requires the use of high number of cells per tissue construct along with time-consuming microscopy and image analysis. Here, we present an inexpensive, versatile, high-throughput platform to measure microtissue contraction in a 96-well plate configuration using one-step batch imaging. More specifically, optical fiber microprobes are embedded in microtissues, and contraction is measured as a function of the deflection of optical signals emitted from the end of the fibers. Signals can be measured from all the filled wells on the plate simultaneously using a digital camera. An algorithm uses pixel-based image analysis and computer vision techniques for the accurate multiwell quantification of positional changes in the optical microprobes caused by the contraction of the microtissues. Microtissue constructs containing 20,000-100,000 human ventricular cardiac fibroblasts (NHCF-V) in 6 mg/mL collagen type I showed contractile displacements ranging from 20-200 µm. This highly sensitive and versatile platform can be used for the high-throughput screening of microtissues in disease modeling, drug screening for therapeutics, physiology research, and safety pharmacology.


Asunto(s)
Fibroblastos , Ensayos Analíticos de Alto Rendimiento , Computadores , Humanos , Procesamiento de Imagen Asistido por Computador
15.
Bioelectricity ; 3(4): 255-271, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35018335

RESUMEN

Serious bone injuries have devastating effects on the lives of patients including limiting working ability and high cost. Orthopedic implants can aid in healing injuries to an extent that exceeds the natural regenerative capabilities of bone to repair fractures or large bone defects. Autografts and allografts are the standard implants used, but disadvantages such as donor site complications, a limited quantity of transplantable bone, and high costs have led to an increased demand for synthetic bone graft substitutes. However, replicating the complex physiological properties of biological bone, much less recapitulating its complex tissue functions, is challenging. Extensive efforts to design biocompatible implants that mimic the natural healing processes in bone have led to the investigation of piezoelectric smart materials because the bone has natural piezoelectric properties. Piezoelectric materials facilitate bone regeneration either by accumulating electric charge in response to mechanical stress, which mimics bioelectric signals through the direct piezoelectric effect or by providing mechanical stimulation in response to electrical stimulation through the converse piezoelectric effect. Although both effects are beneficial, the converse piezoelectric effect can address bone atrophy from stress shielding and immobility by improving the mechanical response of a healing defect. Mechanical stimulation has a positive impact on bone regeneration by activating cellular pathways that increase bone formation and decrease bone resorption. This review will highlight the potential of the converse piezoelectric effect to enhance bone regeneration by discussing the activation of beneficial cellular pathways, the properties of piezoelectric biomaterials, and the potential for the more effective administration of the converse piezoelectric effect using wireless control.

16.
Anal Bioanal Chem ; 413(1): 35-48, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32944809

RESUMEN

In the recent SARS-CoV-2 pandemic, public health experts have emphasized testing, tracking infected people, and tracing their contacts as an effective strategy to reduce the spread of the virus. Several diagnostic methods are reported for detecting the coronavirus in clinical, research, and public health laboratories. Some tests detect the infection directly by detecting the viral RNA and other tests detect the infection indirectly by detecting the host antibodies. A diagnostic test during the pandemic should help make an appropriate clinical decision in a short period of time. Recently reported diagnostic methods for SARS-CoV-2 have varying throughput, batching capacity, requirement of infrastructure setting, analytical performance, and turnaround times ranging from a few minutes to several hours. These factors should be considered while selecting a reliable and rapid diagnostic method to help make an appropriate decision and prompt public health interventions. This paper reviews recent SARS-CoV-2 diagnostic methods published in journals and reports released by regulatory agencies. We compared the analytical efficiency including limit of detection, sensitivity, specificity, and throughput. In addition, we also looked into ease of use, affordability, and availability of accessories. Finally, we discuss the limitations of the methods and provide our perspectives on priorities for future test development.


Asunto(s)
COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Anticuerpos Antivirales/análisis , COVID-19/epidemiología , COVID-19/virología , Humanos , Pandemias , ARN Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Sensibilidad y Especificidad
17.
Biomed Opt Express ; 11(11): 6181-6196, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33282483

RESUMEN

Hearing loss is a prevalent disorder that affects people of all ages. On top of the existing hearing aids and cochlear implants, there is a growing effort to regenerate functional tissues and restore hearing. However, studying and evaluating these regenerative medicine approaches in a big animal model (e.g. pigs) whose anatomy, physiology, and organ size are similar to a human is challenging. In big animal models, the cochlea is bulky, intricate, and veiled in a dense and craggy otic capsule. These facts complicate 3D microscopic analysis that is vital in the cochlea, where structure-function relation is time and again manifested. To allow 3D imaging of an intact cochlea of newborn and juvenile pigs with a volume up to ∼ 250 mm3, we adapted the BoneClear tissue clearing technique, which renders the bone transparent. The transparent cochleae were then imaged with cellular resolution and in a timely fashion, which prevented bubble formation and tissue degradation, using an adaptive custom-built light-sheet fluorescence microscope. The adaptive light-sheet microscope compensated for deflections of the illumination beam by changing the angles of the beam and translating the detection objective while acquiring images. Using this combination of techniques, macroscopic and microscopic properties of the cochlea were extracted, including the density of hair cells, frequency maps, and lower frequency limits. Consequently, the proposed platform could support the growing effort to regenerate cochlear tissues and assist with basic research to advance cures for hearing impairments.

18.
Tissue Eng Part C Methods ; 26(7): 364-374, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32552453

RESUMEN

Engineered scaffolds used to regenerate mammalian tissues should recapitulate the underlying fibrous architecture of native tissue to achieve comparable function. Current fibrous scaffold fabrication processes, such as electrospinning and three-dimensional (3D) printing, possess application-specific advantages, but they are limited either by achievable fiber sizes and pore resolution, processing efficiency, or architectural control in three dimensions. As such, a gap exists in efficiently producing clinically relevant, anatomically sized scaffolds comprising fibers in the 1-100 µm range that are highly organized. This study introduces a new high-throughput, additive fibrous scaffold fabrication process, designated in this study as 3D melt blowing (3DMB). The 3DMB system described in this study is modified from larger nonwovens manufacturing machinery to accommodate the lower volume, high-cost polymers used for tissue engineering and implantable biomedical devices and has a fiber collection component that uses adaptable robotics to create scaffolds with predetermined geometries. The fundamental process principles, system design, and key parameters are described, and two examples of the capabilities to create scaffolds for biomedical engineering applications are demonstrated. Impact statement Three-dimensional melt blowing (3DMB) is a new, high-throughput, additive manufacturing process to produce scaffolds composed of highly organized fibers in the anatomically relevant 1-100 µm range. Unlike conventional melt-blowing systems, the 3DMB process is configured for efficient use with the relatively expensive polymers necessary for biomedical applications, decreasing the required amounts of material for processing while achieving high throughputs compared with 3D printing or electrospinning. The 3DMB is demonstrated to make scaffolds composed of multiple fiber materials and organized into complex shapes, including those typical of human body parts.


Asunto(s)
Hernia/terapia , Herniorrafia/métodos , Polímeros/química , Impresión Tridimensional/instrumentación , Medicina Regenerativa , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Perros
19.
Adv Healthc Mater ; 9(14): e2000275, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32592454

RESUMEN

Chimeric antigen receptor T (CAR-T) cell therapy has produced impressive clinical responses in patients with B-cell malignancies. Critical to the success of CAR-T cell therapies is the achievement of robust gene transfer into T cells mediated by viral vectors such as gamma-retroviral vectors. However, current methodologies of retroviral gene transfer rely on spinoculation and the use of retronectin, which may limit the implementation of cost-effective CAR-T cell therapies. Herein, a low-cost, tunable, macroporous, alginate scaffold that transduces T cells with retroviral vectors under static condition is described. CAR-T cells produced by macroporous scaffold-mediated viral transduction exhibit >60% CAR expression, retain effector phenotype, expand to clinically relevant cell numbers, and eradicate CD19+ lymphoma in vivo. Efficient transduction is dependent on scaffold macroporosity. Taken together, the data show that macroporous alginate scaffolds serve as an attractive alternative to current transduction protocols and have high potential for clinical translation to genetically modify T cells for adoptive cellular therapy.


Asunto(s)
Receptores Quiméricos de Antígenos , Linfocitos T , Antígenos CD19 , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...