Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Structure ; 25(12): 1829-1838.e4, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29129382

RESUMEN

Adhesive chaperone-usher pili are long, supramolecular protein fibers displayed on the surface of many bacterial pathogens. The type 1 and P pili of uropathogenic Escherichia coli (UPEC) play important roles during urinary tract colonization, mediating attachment to the bladder and kidney, respectively. The biomechanical properties of the helical pilus rods allow them to reversibly uncoil in response to flow-induced forces, allowing UPEC to retain a foothold in the unique and hostile environment of the urinary tract. Here we provide the 4.2-Å resolution cryo-EM structure of the type 1 pilus rod, which together with the previous P pilus rod structure rationalizes the remarkable "spring-like" properties of chaperone-usher pili. The cryo-EM structure of the type 1 pilus rod differs in its helical parameters from the structure determined previously by a hybrid approach. We provide evidence that these structural differences originate from different quaternary structures of pili assembled in vivo and in vitro.


Asunto(s)
Proteínas Fimbrias/química , Microscopía por Crioelectrón , Dominios Proteicos , Pliegue de Proteína
2.
Nat Microbiol ; 1(7): 16064, 2016 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-27572967

RESUMEN

Outer membrane proteins are essential for Gram-negative bacteria to rapidly adapt to changes in their environment. Intricate remodelling of the outer membrane proteome is critical for bacterial pathogens to survive environmental changes, such as entry into host tissues(1-3). Fimbriae (also known as pili) are appendages that extend up to 2 µm beyond the cell surface to function in adhesion for bacterial pathogens, and are critical for virulence. The best-studied examples of fimbriae are the type 1 and P fimbriae of uropathogenic Escherichia coli, the major causative agent of urinary tract infections in humans. Fimbriae share a common mode of biogenesis, orchestrated by a molecular assembly platform called 'the usher' located in the outer membrane. Although the mechanism of pilus biogenesis is well characterized, how the usher itself is assembled at the outer membrane is unclear. Here, we report that a rapid response in usher assembly is crucially dependent on the translocation assembly module. We assayed the assembly reaction for a range of ushers and provide mechanistic insight into the ß-barrel assembly pathway that enables the rapid deployment of bacterial fimbriae.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Fimbrias/farmacocinética , Fimbrias Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Escherichia coli/genética , Escherichia coli/fisiología , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/ultraestructura , Humanos , Sistema Urinario/microbiología , Infecciones Urinarias/microbiología
3.
Biochim Biophys Acta ; 1850(3): 554-64, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25063559

RESUMEN

BACKGROUND: Uropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) in approximately 50% of women. These bacteria use type 1 and P pili for host recognition and attachment. These pili are assembled by the chaperone-usher pathway of pilus biogenesis. SCOPE OF REVIEW: The review examines the biogenesis and adhesion of the UPEC type 1 and P pili. Particular emphasis is drawn to the role of the outer membrane usher protein. The structural properties of the complete pilus are also examined to highlight the strength and functionality of the final assembly. MAJOR CONCLUSIONS: The usher orchestrates the sequential addition of pilus subunits in a defined order. This process follows a subunit-incorporation cycle which consists of four steps: recruitment at the usher N-terminal domain, donor-strand exchange with the previously assembled subunit, transfer to the usher C-terminal domains and translocation of the nascent pilus. Adhesion by the type 1 and P pili is strengthened by the quaternary structure of their rod sections. The rod is endowed with spring-like properties which provide mechanical resistance against urine flow. The distal adhesins operate differently from one another, targeting receptors in a specific manner. The biogenesis and adhesion of type 1 and P pili are being therapeutically targeted, and efforts to prevent pilus growth or adherence are described. GENERAL SIGNIFICANCE: The combination of structural and biochemical study has led to the detailed mechanistic understanding of this membrane spanning nano-machine. This can now be exploited to design novel drugs able to inhibit virulence. This is vital in the present era of resurgent antibiotic resistance. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.

4.
J Biol Chem ; 289(45): 30889-99, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25217636

RESUMEN

The PhoD family of extra-cytoplasmic phosphodiesterases are among the most commonly occurring bacterial phosphatases. The exemplars for this family are the PhoD protein of Bacillus subtilis and the phospholipase D of Streptomyces chromofuscus. We present the crystal structure of B. subtilis PhoD. PhoD is most closely related to purple acid phosphatases (PAPs) with both types of enzyme containing a tyrosinate-ligated Fe(3+) ion. However, the PhoD active site diverges from that found in PAPs and uses two Ca(2+) ions instead of the single extra Fe(2+), Mn(2+), or Zn(2+) ion present in PAPs. The PhoD crystals contain a phosphate molecule that coordinates all three active site metal ions and that is proposed to represent a product complex. A C-terminal helix lies over the active site and controls access to the catalytic center. The structure of PhoD defines a new phosphatase active site architecture based on Fe(3+) and Ca(2+) ions.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Hidrolasas Diéster Fosfóricas/química , Secuencia de Aminoácidos , Calcio/química , Dominio Catalítico , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Concentración de Iones de Hidrógeno , Hierro/química , Ligandos , Metales/química , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/química , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Tirosina/química , Zinc/química
5.
Science ; 345(6201): 1170-1173, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25190793

RESUMEN

Alkaline phosphatases play a crucial role in phosphate acquisition by microorganisms. To expand our understanding of catalysis by this class of enzymes, we have determined the structure of the widely occurring microbial alkaline phosphatase PhoX. The enzyme contains a complex active-site cofactor comprising two antiferromagnetically coupled ferric iron ions (Fe(3+)), three calcium ions (Ca(2+)), and an oxo group bridging three of the metal ions. Notably, the main part of the cofactor resembles synthetic oxide-centered triangular metal complexes. Structures of PhoX-ligand complexes reveal how the active-site metal ions bind substrate and implicate the cofactor oxo group in the catalytic mechanism. The presence of iron in PhoX raises the possibility that iron bioavailability limits microbial phosphate acquisition.


Asunto(s)
Fosfatasa Alcalina/química , Proteínas Bacterianas/química , Calcio/química , Coenzimas/química , Hierro/química , Fosfatos/metabolismo , Fosfatasa Alcalina/genética , Proteínas Bacterianas/genética , Catálisis , Dominio Catalítico , Ligandos , Estructura Secundaria de Proteína , Pseudomonas fluorescens/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
6.
Biochim Biophys Acta ; 1840(9): 2783-93, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24797039

RESUMEN

BACKGROUND: Uropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) in approximately 50% of women. These bacteria use type 1 and P pili for host recognition and attachment. These pili are assembled by the chaperone-usher pathway of pilus biogenesis. SCOPE OF REVIEW: The review examines the biogenesis and adhesion of the UPEC type 1 and P pili. Particular emphasis is drawn to the role of the outer membrane usher protein. The structural properties of the complete pilus are also examined to highlight the strength and functionality of the final assembly. MAJOR CONCLUSIONS: The usher orchestrates the sequential addition of pilus subunits in a defined order. This process follows a subunit-incorporation cycle which consists of four steps: recruitment at the usher N-terminal domain, donor-strand exchange with the previously assembled subunit, transfer to the usher C-terminal domains and translocation of the nascent pilus. Adhesion by the type 1 and P pili is strengthened by the quaternary structure of their rod sections. The rod is endowed with spring-like properties which provide mechanical resistance against urine flow. The distal adhesins operate differently from one another, targeting receptors in a specific manner. The biogenesis and adhesion of type 1 and P pili are being therapeutically targeted, and efforts to prevent pilus growth or adherence are described. GENERAL SIGNIFICANCE: The combination of structural and biochemical study has led to the detailed mechanistic understanding of this membrane spanning nano-machine. This can now be exploited to design novel drugs able to inhibit virulence. This is vital in the present era of resurgent antibiotic resistance. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.


Asunto(s)
Adhesión Bacteriana/fisiología , Infecciones por Escherichia coli/metabolismo , Fimbrias Bacterianas/metabolismo , Infecciones Urinarias/metabolismo , Escherichia coli Uropatógena/metabolismo , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Femenino , Fimbrias Bacterianas/genética , Humanos , Masculino , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/genética , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/patogenicidad
7.
Biology (Basel) ; 2(3): 841-60, 2013 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24833049

RESUMEN

Type I and P pili are chaperone-usher pili of uropathogenic Escherichia coli, which allow bacteria to adhere to host cell receptors. Pilus formation and secretion are orchestrated by two accessory proteins, a chaperone, which catalyses pilus subunit folding and maintains them in a polymerization-competent state, and an outer membrane-spanning nanomachine, the usher, which choreographs their assembly into a pilus and drives their secretion through the membrane. In this review, recent structures and kinetic studies are combined to examine the mechanism of type I and P pili assembly, as it is currently known. We also investigate how the knowledge of pilus biogenesis mechanisms has been exploited to design selective inhibitors of the process.

8.
J Mol Biol ; 405(2): 427-35, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21075116

RESUMEN

Shigella flexneri Spa15 is a chaperone of the type 3 secretion system, which binds a number of effectors to ensure their stabilization prior to secretion. One of these effectors is IpgB1, a mimic of the human Ras-like Rho guanosine triphosphatase RhoG. In this study, Spa15 alone and in complex with IpgB1 has been studied by double electron electron resonance, an experiment that gives distance information showing the spacial separation of attached spin labels. This distance is explained by determining the crystal structure of the spin-labeled Spa15 where labels are seen to be buried in hydrophobic pockets. The double electron electron resonance experiment on the Spa15 complex with IpgB1 shows that IpgB1 does not bind Spa15 in the same way as is seen in the homologous Salmonella sp. chaperone:effector complex InvB:SipA.


Asunto(s)
Proteínas Bacterianas/química , Espectroscopía de Resonancia por Spin del Electrón , Electrones , Chaperonas Moleculares/química , Shigella flexneri/metabolismo , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Conformación Proteica , Shigella flexneri/crecimiento & desarrollo , Soluciones , Marcadores de Spin , Proteína de Unión al GTP rac1/química , Proteína de Unión al GTP rac1/metabolismo
9.
Cell Microbiol ; 12(5): 654-64, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20039879

RESUMEN

We investigated how the type III secretion system WxxxE effectors EspM2 of enterohaemorrhagic Escherichia coli, which triggers stress fibre formation, and SifA of Salmonella enterica serovar Typhimurium, which is involved in intracellular survival, modulate Rho GTPases. We identified a direct interaction between EspM2 or SifA and nucleotide-free RhoA. Nuclear Magnetic Resonance Spectroscopy revealed that EspM2 has a similar fold to SifA and the guanine nucleotide exchange factor (GEF) effector SopE. EspM2 induced nucleotide exchange in RhoA but not in Rac1 or H-Ras, while SifA induced nucleotide exchange in none of them. Mutating W70 of the WxxxE motif or L118 and I127 residues, which surround the catalytic loop, affected the stability of EspM2. Substitution of Q124, located within the catalytic loop of EspM2, with alanine, greatly attenuated the RhoA GEF activity in vitro and the ability of EspM2 to induce stress fibres upon ectopic expression. These results suggest that binding of SifA to RhoA does not trigger nucleotide exchange while EspM2 is a unique Rho GTPase GEF.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Salmonella typhimurium/enzimología , Proteína de Unión al GTP rhoA/metabolismo , Sustitución de Aminoácidos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glicoproteínas/química , Glicoproteínas/metabolismo , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Pliegue de Proteína , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...