RESUMEN
The West Nile virus (WNV) subtype Kunjin virus (WNVKUN) is endemic to Australia. Here, we characterized the classical WNVKUN strain, OR393. The original OR393 strain contained two types of viruses: small plaque-forming virus (SP) and large plaque-forming virus (LP). The amino acid residues at positions 156 and 332 in the E protein (E156 and E332) of SP were Ser and Lys (E156S/332K), respectively, whereas those in LP were Phe and Thr (E156F/332T). SP grew slightly faster than LP in vitro. The E protein of SP was N-glycosylated, whereas that of LP was not. Analysis using two recombinant single-mutant LP viruses, rKUNV-LP-EF156S and rKUNV-LP-ET332K, indicated that E156S enlarged plaques formed by LP, but E332K potently reduced them, regardless of the amino acid at E156. rKUNV-LP-EF156S showed significantly higher neuroinvasive ability than LP, SP, and rKUNV-LP-ET332K. Our results indicate that the low-pathogenic classical WNVKUN can easily change its pathogenicity through only a few amino acid substitutions in the E protein. It was also found that Phe at E156 of the rKUNV-LP-ET332K was easily changed to Ser during replication in vitro and in vivo, suggesting that E156S is advantageous for the propagation of WNVKUN in mammalian cells.
Asunto(s)
Proteínas del Envoltorio Viral , Ensayo de Placa Viral , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/patogenicidad , Virus del Nilo Occidental/fisiología , Ratones , Fiebre del Nilo Occidental/virología , Virulencia , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/química , Aminoácidos/metabolismo , Aminoácidos/genética , Replicación Viral , Chlorocebus aethiops , Sustitución de Aminoácidos , Células Vero , Femenino , Humanos , Australia , Línea CelularRESUMEN
Severe fever with thrombocytopenia syndrome (SFTS) virus, a tick-borne bunyavirus, causes a severe/fatal disease termed SFTS; however, the viral virulence is not fully understood. The viral non-structural protein, NSs, is the sole known virulence factor. NSs disturbs host innate immune responses and an NSs-mutant SFTS virus causes no disease in an SFTS animal model. The present study reports a novel determinant of viral tropism as well as virulence in animal models, within the glycoprotein (GP) of SFTS virus and an SFTS-related tick-borne bunyavirus. Infection with mutant SFTS viruses lacking the N-linked glycosylation of GP resulted in negligible usage of calcium-dependent lectins in cells, less efficient infection, high susceptibility to a neutralizing antibody, low cytokine production in macrophage-like cells, and reduced virulence in Ifnar-/- mice, when compared with wildtype virus. Three SFTS virus-related bunyaviruses had N-glycosylation motifs at similar positions within their GP and a glycan-deficient mutant of Heartland virus showed in vitro and in vivo phenotypes like those of the SFTS virus. Thus, N-linked glycosylation of viral GP is a novel determinant for the tropism and virulence of SFTS virus and of a related virus. These findings will help us understand the process of severe/fatal diseases caused by tick-borne bunyaviruses.
Asunto(s)
Glicoproteínas , Phlebovirus , Tropismo Viral , Animales , Glicosilación , Ratones , Virulencia , Phlebovirus/patogenicidad , Phlebovirus/genética , Glicoproteínas/metabolismo , Glicoproteínas/genética , Humanos , Síndrome de Trombocitopenia Febril Grave/virología , Ratones Endogámicos C57BL , Infecciones por Bunyaviridae/virología , Infecciones por Bunyaviridae/metabolismo , Garrapatas/virología , Ratones Noqueados , Orthobunyavirus/patogenicidad , Orthobunyavirus/genética , Orthobunyavirus/metabolismoRESUMEN
Heartland virus (HRTV) causes generalized symptoms, severe shock, and multiple organ failure. We previously reported that interferon-α/ß receptor knockout (IFNAR-/-) mice infected intraperitoneally with 1 × 107 tissue culture-infective dose (TCID50) of HRTV died, while those subcutaneously infected with the same dose of HRTV did not. The pathophysiology of IFNAR-/- mice infected with HRTV and the mechanism underlying the difference in disease severity, which depends on HRTV infection route, were analyzed in this study. The liver, spleen, mesenteric and axillary lymph nodes, and gastrointestinal tract of intraperitoneally (I.P.) infected mice had pathological changes; however, subcutaneously (S.C.) infected mice only had pathological changes in the axillary lymph node and gastrointestinal tract. HRTV RNA levels in the mesenteric lymph node, lung, liver, spleen, kidney, stomach, intestine, and blood were significantly higher in I.P. infected mice than those in S.C. infected mice. Chemokine ligand-1 (CXCL-1), tumor necrosis factor (TNF)-α, interleukin (IL)-12, interferon (IFN)-γ, and IL-10 levels in plasma of I.P. infected mice were higher than those of S.C. infected mice. These results indicated that high levels of viral RNA and the induction of inflammatory responses in HRTV-infected IFNAR-/- mice may be associated with disease severity.
Asunto(s)
Bunyaviridae , Interferón Tipo I , Receptor de Interferón alfa y beta , Animales , Ratones , Receptor de Interferón alfa y beta/genética , Ratones Noqueados , Interferones , Hígado , Interleucina-12RESUMEN
Yokose virus (YOKV) is a bat-associated no-known vector flavivirus group member. We investigated the replication ability of YOKV in mosquito-derived C6/36 cells. YOKV grew in C6/36 cells, but its kinetics of YOKV was markedly slower than those of other mosquito-borne flaviviruses. Transmission electron microscopy indicated an extremely small number of viral particles in YOKV-infected C6/36 cells. Mosquito-borne Japanese encephalitis virus prM-E-bearing chimeric YOKV failed to propagate efficiently in C6/36 cells. We isolated C6/36-adapted YOKV and identified nucleotide mutations in the adapted YOKV. Mutations detected in the 3' non-coding region of the adapted YOKV were critical for the enhanced proliferation ability of the virus. Moreover, the growth of the original and adapted YOKV in C6/36 cells was remarkably increased by shifting the culture temperature from 28 to 36 °C. Thus, our results demonstrate the potential of YOKV to propagate in mosquito cells and support its classification as a mosquito-borne flavivirus.
Asunto(s)
Culicidae , Flavivirus , Animales , Chlorocebus aethiops , Flavivirus/genética , Mosquitos Vectores , Células Vero , Mutación , Replicación ViralRESUMEN
Genotype IV Japanese encephalitis (JE) virus (GIV JEV) is the least common and most neglected genotype in JEV. We evaluated the growth and pathogenic potential of the GIV strain 19CxBa-83-Cv, which was isolated from a mosquito pool in Bali, Indonesia, in 2019, and serological analyses were also conducted. The growth ability of 19CxBa-83-Cv in Vero cells was intermediate between that of the genotype I (GI) strain Mie/41/2002 and the genotype V (GV) strain Muar, whereas 19CxBa-83-Cv and Mie/41/2002 grew faster than Muar in mouse neuroblastoma cells. The neuroinvasiveness of 19CxBa-83-Cv in mice was higher than that of Mie/41/2002 but lower than that of Muar; however, there were no significant differences in neurovirulence in mice among the three strains. The neutralizing titers of sera from 19CxBa-83-Cv- and Mie/41/2002-inoculated mice against 19CxBa-83-Cv and Mie/41/2002 were similar, whereas the titers against Muar were lower than those of the other two viruses. The neutralizing titers of JE vaccine-inoculated mouse pool serum against 19CxBa-83-Cv and Muar were significantly lower than those against Mie/41/2002. The neutralizing titers against the three viruses were similar in three out of the five serum samples from GI-infected JE patients, although the titers against Mie/41/2002 were higher than those against 19CxBa-83-Cv and Muar in the remaining two sera samples. In summary, we identified the basic characteristics of 19CxBa-83-Cv, but further studies are needed to better understand GIV JEV.
Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Virus de la Encefalitis Japonesa (Subgrupo) , Encefalitis Japonesa , Chlorocebus aethiops , Animales , Ratones , Anticuerpos Neutralizantes , Células Vero , Anticuerpos Antivirales , GenotipoRESUMEN
Dengue is a febrile illness caused by the dengue virus (DENV) that belongs to the genus Flavivirus in the family Flaviviridae. Cross-reactivity between flaviviruses poses a challenge while interpreting serological test results. In the present study, the cross-reactivity of sera of the patients with dengue, who traveled from Japan to DENV-endemic countries, was analyzed by using an enzyme-linked immunosorbent assay (ELISA) and neutralization test (NT). Sixteen serum samples were collected from patients with dengue and were tested for: i) IgM antibodies against Zika virus (ZIKV), West Nile virus (WNV), Japanese encephalitis virus (JEV), and tick-borne encephalitis virus (TBEV) using IgM ELISA, ii) IgG antibody against TBEV using IgG ELISA, and iii) neutralizing antibody against ZIKV, WNV, TBEV, and JEV. Among the 16 samples tested using ELISA, seven samples were IgM-positive for at least one of the other flaviviruses, and nine samples were IgG-positive for TBEV. Neutralizing antibody titers (NATs) against ZIKV, WNV, and TBEV were one-fourth or lower than those against the causative DENV in all samples. The NATs against JEV were one-fourth or lower than those against the causative DENV in six convalescent-phase serum sample among the seven convalescent-phase serum samples. The NAT against DENV of the residual one convalescent-phase serum was similar to that against JEV and that against JEV of its relevant acute-phase serum sample. These results showed that NTs with paired serum samples are important to correctly interpret the serological test results for DENV.
Asunto(s)
Virus del Dengue , Dengue , Virus de la Encefalitis Japonesa (Especie) , Virus de la Encefalitis Transmitidos por Garrapatas , Virus del Nilo Occidental , Infección por el Virus Zika , Virus Zika , Humanos , Pruebas de Neutralización/métodos , Anticuerpos Antivirales , Pruebas Serológicas , Anticuerpos Neutralizantes , Ensayo de Inmunoadsorción Enzimática , Reacciones Cruzadas , Inmunoglobulina G , Dengue/diagnóstico , Inmunoglobulina MRESUMEN
Japanese encephalitis virus (JEV) is a mosquito-borne virus belonging to the JEV serocomplex within the genus Flavivirus, family Flaviviridae. It has 5 genotypes, G1-G5, based on the envelope (E) protein nucleotide sequence. JEV G3 circulated in Japan until the early 1990s when it was replaced by G1. JEV G3 was isolated from swine serum samples (sw/Kochi/1/2004) in the Kochi Prefecture, western Japan, in 2004. In addition, the 2018 isolates from pigs and cows (sw/Kochi/492/2018 and bo/Kochi/211/2018) in the same prefecture were identified as G3. The nucleotide sequencing results of the sw/Kochi/492/2018 and bo/Kochi/211/2018 polyprotein region differed from those of the sw/Kochi/1/2004 strain described in our previous report. Seven JEV isolates were identified as G1 in the same geographical area as that in this study. This result indicates that both JEV G1 and G3 are present in the Kochi area.
Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Enfermedades de los Porcinos , Femenino , Animales , Porcinos , Bovinos , Encefalitis Japonesa/epidemiología , Encefalitis Japonesa/veterinaria , Japón/epidemiología , Genotipo , Enfermedades de los Porcinos/epidemiología , FilogeniaRESUMEN
The Chikungunya virus (CHIKV), an enveloped RNA virus that has been identified in over 40 countries and is considered a growing threat to public health worldwide. However, there is no preventive vaccine or specific therapeutic drug for CHIKV infection. To identify a new inhibitor against CHIKV infection, this study constructed a subgenomic RNA replicon expressing the secretory Gaussia luciferase (Gluc) based on the CHIKV SL11131 strain. Transfection of in vitro-transcribed replicon RNA to BHK-21 cells revealed that Gluc activity in culture supernatants was correlated with the intracellular replication of the replicon genome. Through a chemical compound library screen using the Gluc reporter CHIKV replicon, we identified several compounds that suppressed CHIKV infection in Vero cells. Among the hits identified, CP-154,526, a non-peptide antagonist of the corticotropin-releasing factor receptor type-1 (CRF-R1), showed the strongest anti-CHIKV activity and inhibited CHIKV infection in Huh-7 cells. Interestingly, other CRF-R1 antagonists, R121919 and NGD 98-2, also exhibited inhibitory effects on CHIKV infection. Time-of-drug addition and virus entry assays indicated that CP-154,526 suppressed a post-entry step of infection, suggesting that CRF-R1 antagonists acted on a target in the intracellular replication process of CHIKV. Therefore, the Gluc reporter replicon system established in this study would greatly facilitate the development of antiviral drugs against CHIKV infection.
Asunto(s)
Arecaceae , Fiebre Chikungunya , Virus Chikungunya , Copépodos , Chlorocebus aethiops , Animales , Virus Chikungunya/genética , Fiebre Chikungunya/tratamiento farmacológico , Células Vero , Hormona Liberadora de Corticotropina , Replicón/genética , Luciferasas/genética , Replicación ViralRESUMEN
The rabies virus is widely distributed and vaccines are an important strategy to prevent its spread. The whole-genome sequences of rabies strains in relation to vaccine development provide essential information to maintain vaccine quality and develop new vaccines. However, the genetic characteristics of the purified chick embryo cell culture rabies vaccine, KM Biologics (PCECV-KMB), developed in Japan in the 1970s, have not been explored. In this study, we conducted a genome-wide analysis of the open reading frame regions of rabies strains discovered from the 1940s-1980s and used to develop chick embryo cell-adapted HEP-Flury small plaque-forming (CEF-S) strain, which is a vaccine strain of PCECV-KMB. The genetic characteristic of CEF-S, developed by acclimation of the HEP-Flury-NIID strain to one-day eggs and subsequently to chick embryo cells, were confirmed by comparing the genome identity and revealing the nine amino acid mutations between CEF-S and HEP-Flury-NIID. The efficacy of PCECV-KMB was evaluated using attack strains isolated in Thailand in the 1960s-1970s during vaccine development. Phylogenetic analyses of the attack strains classified them in the same Asian clade as the 2000s imported cases from the Philippines to Japan, suggesting that PCECV-KMB is adequate for preventing the spread of the current rabies virus.
Asunto(s)
Productos Biológicos , Vacunas Antirrábicas , Virus de la Rabia , Rabia , Animales , Humanos , Embrión de Pollo , Virus de la Rabia/genética , Rabia/prevención & control , Filogenia , Japón , Desarrollo de Vacunas , Anticuerpos Antivirales , AminoácidosRESUMEN
Heartland bandavirus (HRTV) is an emerging tick-borne virus that is distributed in the United States and that causes febrile illness with thrombocytopenia and leukocytopenia. It is genetically close to Dabie bandavirus, which is well known as severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV). The mortality rate of human HRTV infection is approximately 10%; however, neither approved anti-HRTV agents nor vaccines exist. An appropriate animal model should be developed to evaluate the efficacy of antiviral agents and vaccines against HRTV. The susceptibility of IFNAR-/- mice with HRTV infection was evaluated using subcutaneous, intraperitoneal, and retro-orbital inoculation routes. IFNAR-/- mice intraperitoneally infected with HRTV showed the most severe clinical signs, and the 50% lethal dose was 3.2 × 106 TCID50. Furthermore, to evaluate the utility of a novel lethal IFNAR-/- mice model, IFNAR-/- mice were orally administered favipiravir, ribavirin, or a solvent for 5 days immediately after a lethal dose of HRTV inoculation. The survival rates of the favipiravir-, ribavirin-, and solvent-administered mice were 100, 33, and 0%, respectively. The changes in bodyweights and HRTV RNA loads in the blood of favipiravir-treated IFNAR-/- mice were the lowest among the three groups, which suggests that favipiravir is a promising drug candidate for the treatment of patients with HRTV infection.
Asunto(s)
Phlebovirus , Trombocitopenia , Amidas , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Pirazinas , Receptor de Interferón alfa y beta/genética , Ribavirina/uso terapéutico , SolventesRESUMEN
Heartland bandavirus (HRTV), which is an emerging tick-borne virus first identified in Missouri in 2009, causes fever, fatigue, decreased appetite, headache, nausea, diarrhea, and muscle or joint pain in humans. HRTV is genetically close to Dabie bandavirus, which is the causative agent of severe fever with thrombocytopenia syndrome (SFTS) in humans and is known as SFTS virus (SFTSV). The generation of infectious HRTV entirely from cloned cDNAs has not yet been reported. The absence of a reverse genetics system for HRTV has delayed efforts to understand its pathogenesis and to generate vaccines and antiviral drugs. Here, we developed a reverse genetics system for HRTV, which employs an RNA polymerase I-mediated expression system. A recombinant nonstructural protein (NSs)-knockout HRTV (rHRTV-NSsKO) was generated. We found that NSs interrupted signaling associated with innate immunity in HRTV-infected cells. The rHRTV-NSsKO was highly attenuated, indicated by the apparent absence of symptoms in a mouse model of HRTV infection. Moreover, mice immunized with rHRTV-NSsKO survived a lethal dose of HRTV. These findings suggest that NSs is a virulence factor of HRTV and that rHRTV-NSsKO could be a vaccine candidate for HRTV. IMPORTANCE Heartland bandavirus (HRTV) is a tick-borne virus identified in the United States in 2009. HRTV causes fever, fatigue, decreased appetite, headache, nausea, diarrhea, and muscle or joint pain in humans. FDA-approved vaccines and antiviral drugs are unavailable. The lack of a reverse genetics system hampers efforts to develop such antiviral therapeutics. Here, we developed a reverse genetics system for HRTV that led to the generation of a recombinant nonstructural protein (NSs)-knockout HRTV (rHRTV-NSsKO). We found that NSs interrupted signaling associated with innate immunity in HRTV-infected cells. Furthermore, rHRTV-NSsKO was highly attenuated and immunogenic in a mouse model. These findings suggest that NSs is a virulence factor of HRTV and that rHRTV-NSsKO could be a vaccine candidate for HRTV.
Asunto(s)
Phlebovirus , Genética Inversa , Proteínas no Estructurales Virales , Animales , Antivirales/metabolismo , Artralgia , Bunyaviridae/genética , Bunyaviridae/inmunología , Bunyaviridae/patogenicidad , Diarrea , Fatiga , Cefalea , Humanos , Inmunidad Innata/inmunología , Ratones , Náusea , Phlebovirus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Genética Inversa/métodos , Transducción de Señal/inmunología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Virulencia/genética , Factores de Virulencia/genéticaRESUMEN
Owing to genotype-specific neutralizing antibodies, analyzing differences in the immunogenic variation among dengue virus (DENV) genotypes is central to effective vaccine development. Herein, we characterized the viral kinetics and antibody response induced by DENV type 2 Asian I (AI) and Asian/American (AA) genotypes using marmosets (Callithrix jacchus) as models. Two groups of marmosets were inoculated with AI and AA genotypes, and serial plasma samples were collected. Viremia levels were determined using quantitative reverse transcription-PCR, plaque assays, and antigen enzyme-linked immunosorbent assay (ELISA). Anti-DENV immunoglobulin M and G antibodies, neutralizing antibody titer, and antibody-dependent enhancement (ADE) activity were determined using ELISA, plaque reduction neutralization test, and ADE assay, respectively. The AI genotype induced viremia for a longer duration, but the AA genotype induced higher levels of viremia. After four months, the neutralizing antibody titer induced by the AA genotype remained high, but that induced by the AI genotype waned. ADE activity toward Cosmopolitan genotypes was detected in marmosets inoculated with the AI genotype. These findings indicate discrepancies between heterologous genotypes that influence neutralizing antibodies and viremia in marmosets, a critical issue in vaccine development.
RESUMEN
Genotype V (GV) Japanese encephalitis virus (JEV) has emerged in Korea and China since 2009. Recent findings suggest that current Japanese encephalitis (JE) vaccines may reduce the ability to induce neutralizing antibodies against GV JEV compared to other genotypes. This study sought to produce a novel live attenuated JE vaccine with a high efficacy against GV JEV. Genotype I (GI)-GV intertypic recombinant strain rJEV-EXZ0934-M41 (EXZ0934), in which the E region of the GI Mie/41/2002 strain was replaced with that of GV strain XZ0934, was introduced with the same 10 attenuation substitutions in the E region found in the live attenuated JE vaccine strain SA 14-14-2 to produce a novel mutant virus rJEV-EXZ/SA14142m-M41 (EXZ/SA14142m). In addition, another mutant rJEV-EM41/SA14142m-M41 (EM41/SA14142m), which has the same substitutions in the Mie/41/2002, was also produced. The neuroinvasiveness and neurovirulence of the two mutant viruses were significantly reduced in mice. The mutant viruses induced neutralizing antibodies against GV JEV in mice. The growth of EXZ/SA14142m was lower than that of EM41/SA14142m. In mouse challenge tests, a single inoculation with a high dose of the mutants blocked lethal GV JEV infections; however, the protective efficacy of EXZ/SA14142m was weaker than that of EM41/SA14142m in low-dose inoculations. The lower protection potency of EXZ/SA14142m may be ascribed to the reduced growth ability caused by the attenuation mutations.
RESUMEN
Various pathogens, such as Ebola virus, Marburg virus, Nipah virus, Hendra virus, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, are threatening human health worldwide. The natural hosts of these pathogens are thought to be bats. The rousette bat, a megabat, is thought to be a natural reservoir of filoviruses, including Ebola and Marburg viruses. Additionally, the rousette bat showed a transient infection in the experimental inoculation of SARS-CoV-2. In the current study, we established and characterized intestinal organoids from Leschenault's rousette, Rousettus leschenaultii. The established organoids successfully recapitulated the characteristics of intestinal epithelial structure and morphology, and the appropriate supplements necessary for long-term stable culture were identified. The organoid showed susceptibility to Pteropine orthoreovirus (PRV) but not to SARS-CoV-2 in experimental inoculation. This is the first report of the establishment of an expandable organoid culture system of the rousette bat intestinal organoid and its sensitivity to bat-associated viruses, PRV and SARS-CoV-2. This organoid is a useful tool for the elucidation of tolerance mechanisms of the emerging rousette bat-associated viruses such as Ebola and Marburg virus.
Asunto(s)
COVID-19/virología , Quirópteros/virología , Organoides/virología , Orthoreovirus/fisiología , Infecciones por Reoviridae/virología , SARS-CoV-2/fisiología , Animales , COVID-19/veterinaria , Técnicas de Cultivo de Célula , Células Cultivadas , Quirópteros/fisiología , Humanos , Intestinos/citología , Intestinos/virología , Organoides/citología , Infecciones por Reoviridae/veterinariaRESUMEN
Zika virus (ZIKV) is a mosquito-borne flavivirus that causes febrile illness. The recent spread of ZIKV from Asia to the Americas via the Pacific region has revealed unprecedented features of ZIKV, including transplacental congenital infection causing microcephaly. Amino acid changes have been hypothesized to underlie the spread and novel features of American ZIKV strains; however, the relationship between genetic changes and the epidemic remains controversial. A comparison of the characteristics of a Southeast Asian strain (NIID123) and an American strain (PRVABC59) revealed that the latter had a higher replication ability in cultured cells and higher virulence in mice. In this study, we aimed to identify the genetic region of ZIKV responsible for these different characteristics using reverse genetics. A chimeric NIID123 strain in which the E protein was replaced with that of PRVABC59 showed a lower growth ability than the recombinant wild-type strain. Adaptation of the chimeric NIID123 to Vero cells induced a Phe-to-Leu amino acid substitution at position 146 of the prM protein; PRVABC59 also has Leu at this position. Leu at this position was found to be responsible for the viral replication ability and partially, for the pathogenicity in mouse testes.
Asunto(s)
Sustitución de Aminoácidos , Interacciones Huésped-Patógeno , Mutación , Proteínas del Envoltorio Viral/genética , Infección por el Virus Zika/virología , Virus Zika/genética , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Genoma Viral , Genómica/métodos , Ratones , Células Vero , Virulencia , Replicación Viral , Virus Zika/patogenicidad , Infección por el Virus Zika/patologíaRESUMEN
Zika virus (ZIKV) infection during pregnancy causes a wide spectrum of congenital abnormalities and postnatal developmental sequelae such as fetal loss, intrauterine growth restriction (IUGR), microcephaly, or motor and neurodevelopmental disorders. Here, we investigated whether a mouse pregnancy model recapitulated a wide range of symptoms after congenital ZIKV infection, and whether the embryonic age of congenital infection changed the fetal or postnatal outcomes. Infection with ZIKV strain PRVABC59 from embryonic day 6.5 (E6.5) to E8.5, corresponding to the mid-first trimester in humans, caused fetal death, fetal resorption, or severe IUGR, whereas infection from E9.5 to E14.5, corresponding to the late-first to second trimester in humans, caused stillbirth, neonatal death, microcephaly, and postnatal growth deficiency. Furthermore, 4-week-old offspring born to dams infected at E12.5 showed abnormalities in neuropsychiatric state, motor behavior, autonomic function, or reflex and sensory function. Thus, our model recapitulated the multiple symptoms seen in human cases, and the embryonic age of congenital infection was one of the determinant factors of offspring outcomes in mice. Furthermore, maternal neutralizing antibodies protected the offspring from neonatal death after congenital infection at E9.5, suggesting that neonatal death in our model could serve as criteria for screening of vaccine candidates.
Asunto(s)
Feto/virología , Microcefalia/virología , Malformaciones del Sistema Nervioso/virología , Infección por el Virus Zika/congénito , Virus Zika/patogenicidad , Animales , Modelos Animales de Enfermedad , Embrión de Mamíferos/virología , Femenino , Ratones , Ratones Endogámicos C57BL , EmbarazoRESUMEN
Zika virus (ZIKV) strains are classified into the African and Asian genotypes. The higher virulence of the African MR766 strain, which has been used extensively in ZIKV research, in adult IFNα/ß receptor knockout (IFNAR-/-) mice is widely viewed as an artifact associated with mouse adaptation due to at least 146 passages in wild-type suckling mouse brains. To gain insights into the molecular determinants of MR766's virulence, a series of genes from MR766 were swapped with those from the Asian genotype PRVABC59 isolate, which is less virulent in IFNAR-/- mice. MR766 causes 100% lethal infection in IFNAR-/- mice, but when the prM gene of MR766 was replaced with that of PRVABC59, the chimera MR/PR(prM) showed 0% lethal infection. The reduced virulence was associated with reduced neuroinvasiveness, with MR766 brain titers ≈3 logs higher than those of MR/PR(prM) after subcutaneous infection, but was not significantly different in brain titers of MR766 and MR/PR(prM) after intracranial inoculation. MR/PR(prM) also showed reduced transcytosis when compared with MR766 in vitro. The high neuroinvasiveness of MR766 in IFNAR-/- mice could be linked to the 10 amino acids that differ between the prM proteins of MR766 and PRVABC59, with 5 of these changes affecting positive charge and hydrophobicity on the exposed surface of the prM protein. These 10 amino acids are highly conserved amongst African ZIKV isolates, irrespective of suckling mouse passage, arguing that the high virulence of MR766 in adult IFNAR-/- mice is not the result of mouse adaptation.
Asunto(s)
Proteínas del Envoltorio Viral/genética , Virulencia/genética , Infección por el Virus Zika/virología , Virus Zika/genética , Virus Zika/patogenicidad , Animales , Barrera Hematoencefálica , Permeabilidad Capilar , Genotipo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Virus Zika/metabolismoRESUMEN
INTRODUCTION: Several clinical studies have reported the efficacy of favipiravir in reducing viral load and shortening the duration of symptoms. However, the viability of SARS-CoV-2 in the context of favipiravir therapy and the potential for resistance development is unclear. METHODS: We sequenced SARS-CoV-2 in nasopharyngeal specimens collected from patients who participated in a randomized clinical trial of favipiravir at hospitals across Japan between March and May 2020. Paired genomes were sequenced from those who remained RT-PCR-positive 5-8 days into favipiravir therapy. Daily nasopharyngeal specimens from 69 patients who were RT-PCR-positive at randomization were examined for a cytopathic effect (CPE). RESULTS: Some strains early in the trial belonged to clade 19 B, whereas the majority belonged to clade 20 B. The median time from the disease onset to negative CPE was 9 days. CPE was strongly correlated with the time from disease onset, viral load, age, and male sex. Among 23 patients for whom paired genomes were available, all except one had identical genomes. Two mutations were observed in one patient who received favipiravir, neither in the RdRp gene. CONCLUSIONS: The SARS-CoV-2 genome distribution in this clinical trial conducted in Japan reflected the early influx of strains from China followed by replacement by strains from Europe. CPE was significantly associated with age, male sex, and viral loads but not with favipiravir therapy. There was no evidence of resistance development during favipiravir therapy.
Asunto(s)
COVID-19 , SARS-CoV-2 , Amidas , Antivirales/uso terapéutico , China , Europa (Continente) , Genómica , Humanos , Japón , Masculino , Pirazinas , Resultado del TratamientoRESUMEN
Chikungunya virus (CHIKV) is a mosquito-borne RNA virus that causes Chikungunya fever in humans. In this study, we generated two DNA-based CHIKV infectious clones derived from an Indian Ocean Lineage SL11131 strain and a prototype Ross strain. When the replication capabilities of the infectious CHIKV in various cell lines were evaluated, the SL11131 strain was found to replicate more efficiently than the Ross strain in Aedes albopictus C6/36 cells, whereas SL11131 underwent limited replication in a BHK-21-derivative cell line named BHK-DRV. Infection experiments using chimeric CHIKV between SL11131 and Ross revealed that these different replication activities of SL11131 in C6/36 and BHK-DRV cells were determined by structural and nonstructural genes, respectively. Therefore, the infectious clones created in this study will be a useful tool for investigating the virological features of a recent epidemic strain of CHIKV and benefit the development of effective prevention and treatment of CHIKV infection.
Asunto(s)
Aedes/virología , Virus Chikungunya/genética , Virus Chikungunya/metabolismo , Quimera/genética , Quimera/metabolismo , Animales , Línea Celular , Fiebre Chikungunya/virología , Chlorocebus aethiops , Cricetinae , Genes Virales , Células HeLa , Células Hep G2 , Humanos , Células Vero , Replicación ViralRESUMEN
Dengue fever outbreaks have been repeatedly reported in Côte d'Ivoire. During the 2019 outbreak, DENV-1 was the predominant strain and phylogenetic analysis of the DENV-1 genome obtained from the present patient who returned to Japan in January 2019 revealed a high homology with the 2013-2014 Southeast Asian strains. In a previous outbreak in 2017, DENV-1 accounted for 5% of the DENV serotypes. The endemic DENV-1 strain in Abidjan in 2019 could be a strain that was imported from Southeast Asia. Dengue virus can spread globally, and imported dengue fever cases could serve as an alert for outbreaks in the exporting country.