Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 54(47): 13952-6, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26447926

RESUMEN

Fluorescent proteins are transformative tools; thus, any brightness increase is a welcome improvement. We invented the "vGFP strategy" based on structural analysis of GFP bound to a single-domain antibody, predicting tunable dimerization, enhanced brightness (ca. 50%), and improved pH resistance. We verified all of these predictions using biochemistry, crystallography, and single-molecule studies. We applied the vsfGFP proteins in three diverse scenarios: single-step immunofluorescence in vitro (3× brighter due to dimerization); expression in bacteria and human cells in vivo (1.5× brighter); and protein fusions showing better pH resistance in human cells in vivo. The vGFP strategy thus allows upgrading of existing applications, is applicable to other fluorescent proteins, and suggests a method for tuning dimerization of arbitrary proteins and optimizing protein properties in general.


Asunto(s)
Anticuerpos/química , Diseño de Fármacos , Proteínas Fluorescentes Verdes/química , Multimerización de Proteína , Escherichia coli/química , Escherichia coli/citología , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Conformación Proteica
2.
J Chromatogr A ; 1408: 151-60, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26187767

RESUMEN

Monoclonal IgG at pH 3.5 expressed a tendency to self-associate and associate non-specifically with surfaces, including the surfaces of precipitated chromatin heteroaggregates. The tendency was elevated with protein A-eluted IgG still in elution buffer (100mM acetate, pH 3.5). Association of IgG with chromatin elements under protein A elution conditions amplified host protein contamination of the elution fraction about 15-fold, caused formation of aggregates that persisted after pH neutralization, and imposed an approximate 5% loss on IgG recovery. Neutralization released eluted IgG from its low pH associations with chromatin and caused heteroaggregate remnants to associate into large particles easily removed by microfiltration. Most effective host contaminant clearance was achieved by filtration after neutralization to pH 5.5. All chromatin-mediated liabilities were suspended by extraction of chromatin heteroaggregates in advance of protein A.


Asunto(s)
Anticuerpos Monoclonales/química , Cromatina/química , Inmunoglobulina G/química , Proteína Estafilocócica A/química , Tampones (Química) , Cromatografía de Afinidad , Concentración de Iones de Hidrógeno , Agregado de Proteínas
3.
Nucleic Acids Res ; 43(13): e83, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-25800749

RESUMEN

Creation of defined genetic mutations is a powerful method for dissecting mechanisms of bacterial disease; however, many genetic tools are only developed for laboratory strains. We have designed a modular and general negative selection strategy based on inducible toxins that provides high selection stringency in clinical Escherichia coli and Salmonella isolates. No strain- or species-specific optimization is needed, yet this system achieves better selection stringency than all previously reported negative selection systems usable in unmodified E. coli strains. The high stringency enables use of negative instead of positive selection in phage-mediated generalized transduction and also allows transfer of alleles between arbitrary strains of E. coli without requiring phage. The modular design should also allow further extension to other bacteria. This negative selection system thus overcomes disadvantages of existing systems, enabling definitive genetic experiments in both lab and clinical isolates of E. coli and other Enterobacteriaceae.


Asunto(s)
Enterobacteriaceae/genética , Escherichia coli/genética , Mutación , Alelos , Toxinas Bacterianas/biosíntesis , Toxinas Bacterianas/genética , Ingeniería Celular , Cromosomas Bacterianos , Clonación Molecular/métodos , Escherichia coli/aislamiento & purificación , Sitios Genéticos , Humanos , Salmonella enterica/genética , Salmonella enterica/aislamiento & purificación , Transducción Genética
4.
J Chromatogr A ; 1340: 68-78, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24661871

RESUMEN

Chromatin released from dead host cells during in vitro production of IgG monoclonal antibodies exists mostly in complex hetero-aggregates consisting of nucleosomal arrays (DNA+histone proteins), non-histone proteins, and aberrant forms of IgG. They bind immobilized protein A more aggressively than IgG, through their nucleosomal histone components, and hinder access of IgG to Fc-specific binding sites, thereby reducing dynamic binding capacity. The majority of host cell contaminants in eluted IgG are leachates from chromatin hetero-aggregates that remain bound to protein A. Formation of turbidity in eluted IgG during pH titration is caused by neutral-pH insolubility of chromatin hetero-aggregates. NaOH is required at 500 mM to remove accumulated chromatin. A chromatin-directed clarification method removed 99% of histones, 90% of non-histone proteins, achieved a 6 log reduction of DNA, 4 log reduction of lipid-enveloped virus, and 5 log reduction of non-enveloped retrovirus, while conserving 98% of the native IgG. This suspended most of performance compromises imposed on protein A. IgG binding capacity increased ~20%. Host protein contamination was reduced about 100-fold compared to protein A loaded with harvest clarified by centrifugation and microfiltration. Aggregates were reduced to less than 0.05%. Turbidity of eluted IgG upon pH neutralization was nearly eliminated. Column cleaning was facilitated by minimizing the accumulation of chromatin.


Asunto(s)
Cromatina/metabolismo , Cromatografía de Afinidad , Inmunoglobulina G/aislamiento & purificación , Proteína Estafilocócica A/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Cromatina/química , ADN/química , ADN/aislamiento & purificación , Histonas/aislamiento & purificación , Inmunoglobulina G/metabolismo , Proteínas/química , Proteínas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...