Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Front Aging Neurosci ; 16: 1430408, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351012

RESUMEN

Background: Although its incidence is relatively low, delayed-onset post-stroke cognitive decline (PSCD) may offer valuable insights into the "vascular contributions to cognitive impairment and dementia," particularly concerning the roles of vascular and neurodegenerative mechanisms. We postulated that the functional segregation observed during post-stroke compensation could be disrupted by underlying amyloid pathology or cerebral small vessel disease (cSVD), leading to delayed-onset PSCD. Methods: Using a prospective stroke registry, we identified patients who displayed normal cognitive function at baseline evaluation within a year post-stroke and received at least one subsequent assessment. Patients suspected of pre-stroke cognitive decline were excluded. Decliners [defined by a decrease of ≥3 Mini-Mental State Examination (MMSE) points annually or an absolute drop of ≥5 points between evaluations, confirmed with detailed neuropsychological tests] were compared with age- and stroke severity-matched non-decliners. Index-stroke MRI, resting-state functional MRI, and 18F-florbetaben PET were used to identify cSVD, functional network attributes, and amyloid deposits, respectively. PET data from age-, sex-, education-, and apolipoprotein E-matched stroke-free controls within a community-dwelling cohort were used to benchmark amyloid deposition. Results: Among 208 eligible patients, 11 decliners and 10 matched non-decliners were identified over an average follow-up of 5.7 years. No significant differences in cSVD markers were noted between the groups, except for white matter hyperintensities (WMHs), which were strongly linked with MMSE scores among decliners (rho = -0.85, p < 0.01). Only one decliner was amyloid-positive, yet subthreshold PET standardized uptake value ratios (SUVR) in amyloid-negative decliners inversely correlated with final MMSE scores (rho = -0.67, p = 0.04). Decliners exhibited disrupted modular structures and more intermingled canonical networks compared to non-decliners. Notably, the somato-motor network's system segregation corresponded with the decliners' final MMSE (rho = 0.67, p = 0.03) and was associated with WMH volume and amyloid SUVR. Conclusion: Disruptions in modular structures, system segregation, and inter-network communication in the brain may be the pathophysiological underpinnings of delayed-onset PSCD. WMHs and subthreshold amyloid deposition could contribute to these disruptions in functional brain networks. Given the limited number of patients and potential residual confounding, our results should be considered hypothesis-generating and need replication in larger cohorts in the future.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39251255

RESUMEN

BACKGROUND AND PURPOSE: Idiopathic normal pressure hydrocephalus (iNPH) is reversible dementia, that is underdiagnosed. The purpose of this study was to develop an automated diagnostic method for iNPH using artificial intelligence techniques with a T1-weighted MRI scan. MATERIALS AND METHODS: We quantified iNPH, Parkinson's disease, Alzheimer's disease, and healthy control patients on T1-weighted 3D brain MRI scans using 452 scans for training and 110 scans for testing. Automatic component measurement algorithms were developed for Evans' index, Sylvian fissure enlargement, high-convexity tightness, callosal angle, and normalized lateral ventricle volume. XGBoost models were trained for both automated measurements and manual labels for iNPH prediction. RESULTS: A total of 452 patients (200 men; mean age ± standard deviation, 73.2 ± 6.5 years) were included in the training set. Of the 452 patients, 111 (24.6%) had iNPH. We obtained AUC values of 0.956 for automatically measured high-convexity tightness and 0.830 for Sylvian fissure enlargement. Intra-class correlation values of 0.824 for the callosal angle and 0.924 for Evans' index were measured. Using the decision tree of the XGBoost model, the model trained on manual labels obtained an average cross-validation AUC of 0.988 on the training set and 0.938 on the unseen test set, while the fully automated model obtained a cross-validation AUC of 0.983 and an unseen test AUC of 0.936. CONCLUSION: We demonstrated a machine-learning algorithm capable of diagnosing iNPH from a 3D T1-weighted MRI scan that is robust to the failure. We propose a method to scan large numbers of 3D T1-weighted MRI scans with minimal human intervention, making possible large-scale iNPH screening. ABBREVIATIONS: iNPH = idiopathic normal-pressure hydrocephalus; PD = Parkinson's disease; AD = Alzheimer's disease; HC = healthy control; CSF = cerebrospinal fluid; DESH = disproportionately enlarged subarachnoid space hydrocephalus; 3D = three-dimensional.

3.
Alzheimers Res Ther ; 16(1): 185, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148136

RESUMEN

BACKGROUND: The cholinergic neurotransmitter system is crucial to cognitive function, with the basal forebrain (BF) being particularly susceptible to Alzheimer's disease (AD) pathology. However, the interaction of white matter hyperintensities (WMH) in cholinergic pathways and BF atrophy without amyloid pathology remains poorly understood. METHODS: We enrolled patients who underwent neuropsychological tests, magnetic resonance imaging, and 18F-florbetaben positron emission tomography due to cognitive impairment at the teaching university hospital from 2015 to 2022. Among these, we selected patients with negative amyloid scans and additionally excluded those with Parkinson's dementia that may be accompanied by BF atrophy. The WMH burden of cholinergic pathways was quantified by the Cholinergic Pathways Hyperintensities Scale (CHIPS) score, and categorized into tertile groups because the CHIPS score did not meet normal distribution. Segmentation of the BF on volumetric T1-weighted MRI was performed using FreeSurfer, then was normalized for total intracranial volume. Multivariable regression analysis was performed to investigate the association between BF volumes and CHIPS scores. RESULTS: A total of 187 patients were enrolled. The median CHIPS score was 12 [IQR 5.0; 24.0]. The BF volume of the highest CHIPS tertile group (mean ± SD, 3.51 ± 0.49, CHIPSt3) was significantly decreased than those of the lower CHIPS tertile groups (3.75 ± 0.53, CHIPSt2; 3.83 ± 0.53, CHIPSt1; P = 0.02). In the univariable regression analysis, factors showing significant associations with the BF volume were the CHIPSt3 group, age, female, education, diabetes mellitus, smoking, previous stroke history, periventricular WMH, and cerebral microbleeds. In multivariable regression analysis, the CHIPSt3 group (standardized beta [ßstd] = -0.25, P = 0.01), female (ßstd = 0.20, P = 0.04), and diabetes mellitus (ßstd = -0.22, P < 0.01) showed a significant association with the BF volume. Sensitivity analyses showed a negative correlation between CHIPS score and normalized BF volume, regardless of WMH severity. CONCLUSIONS: We identified a significant correlation between strategic WMH burden in the cholinergic pathway and BF atrophy independently of amyloid positivity and WMH severity. These results suggest a mechanism of cholinergic neuronal loss through the dying-back phenomenon and provide a rationale that strategic WMH assessment may help identify target groups that may benefit from acetylcholinesterase inhibitor treatment.


Asunto(s)
Prosencéfalo Basal , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Sustancia Blanca , Humanos , Femenino , Masculino , Anciano , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Prosencéfalo Basal/diagnóstico por imagen , Prosencéfalo Basal/patología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/metabolismo , Atrofia/patología , Anciano de 80 o más Años
4.
Korean J Radiol ; 25(8): 726-741, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39109501

RESUMEN

Recent advancements in Alzheimer's disease treatment have focused on the elimination of amyloid-beta (Aß) plaque, a hallmark of the disease. Monoclonal antibodies such as lecanemab and donanemab can alter disease progression by binding to different forms of Aß aggregates. However, these treatments raise concerns about adverse effects, particularly amyloid-related imaging abnormalities (ARIA). Careful assessment of safety, especially regarding ARIA, is crucial. ARIA results from treatment-related disruption of vascular integrity and increased vascular permeability, leading to the leakage of proteinaceous fluid (ARIA-E) and heme products (ARIA-H). ARIA-E indicates treatment-induced edema or sulcal effusion, while ARIA-H indicates treatment-induced microhemorrhage or superficial siderosis. The minimum recommended magnetic resonance imaging sequences for ARIA assessment are T2-FLAIR, T2* gradient echo (GRE), and diffusion-weighted imaging (DWI). T2-FLAIR and T2* GRE are necessary to detect ARIA-E and ARIA-H, respectively. DWI plays a role in differentiating ARIA-E from acute to subacute infarcts. Physicians, including radiologists, must be familiar with the imaging features of ARIA, the appropriate imaging protocol for the ARIA workup, and the reporting of findings in clinical practice. This review aims to describe the clinical and imaging features of ARIA and suggest points for the timely detection and monitoring of ARIA in clinical practice.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Anticuerpos Monoclonales , Imagen por Resonancia Magnética , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/inmunología , Péptidos beta-Amiloides/metabolismo , Imagen por Resonancia Magnética/métodos
5.
Front Aging Neurosci ; 16: 1399457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974905

RESUMEN

Introduction: Although white matter hyperintensity (WMH) shares similar vascular risk and pathology with small vessel occlusion (SVO) stroke, there were few studies to evaluate the impact of the burden of WMH volume on early and delayed stroke outcomes in SVO stroke. Materials and methods: Using a multicenter registry database, we enrolled SVO stroke patients between August 2013 and November 2022. The WMH volume was estimated by automated methods using deep learning (VUNO Med-DeepBrain, Seoul, South Korea), which was a commercially available segmentation model. After propensity score matching (PSM), we evaluated the impact of WMH volume on early neurological deterioration (END) and poor functional outcomes at 3-month modified Ranking Scale (mRS), defined as mRS score >2 at 3 months, after an SVO stroke. Results: Among 1,718 SVO stroke cases, the prevalence of subjects with severe WMH (Fazekas score ≥ 3) was 68.9%. After PSM, END and poor functional outcomes at 3-month mRS (mRS > 2) were higher in the severe WMH group (END: 6.9 vs. 13.5%, p < 0.001; 3-month mRS > 2: 11.4 vs. 24.7%, p < 0.001). The logistic regression analysis using the PSM cohort showed that total WMH volume increased the risk of END [odd ratio [OR], 95% confidence interval [CI]; 1.01, 1.00-1.02, p = 0.048] and 3-month mRS > 2 (OR, 95% CI; 1.02, 1.01-1.03, p < 0.001). Deep WMH was associated with both END and 3-month mRS > 2, but periventricular WMH was associated with 3-month mRS > 2 only. Conclusion: This study used automated methods using a deep learning segmentation model to assess the impact of WMH burden on outcomes in SVO stroke. Our findings emphasize the significance of WMH burden in SVO stroke prognosis, encouraging tailored interventions for better patient care.

6.
J Neurol ; 271(9): 6147-6159, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39060618

RESUMEN

OBJECTIVES: The few voxel-wise lesion-symptom mapping (VLSM) studies aimed at identifying the anatomy of executive function are limited by the absence of a model and by small populations. Using Trail Making Test (TMT) and verbal fluency and a model of their architectures, our objective was to identify the key structures underlying two major executive processes, set-shifting and strategic word search. METHODS: We applied a validated VLSM analysis to harmonized cognitive and imaging data from 2009 ischemic stroke patients as a part of the Meta VCI Map consortium. All contrast analyses used an adjusted threshold with 2000 Freedman-Lane permutations (p ≤ 0.05). RESULTS: The TMT parts A and B were associated with structures involved in visual-spatial processing, the motor system, the frontal lobes, and their subcortical connections. Set-shifting depended on the left dorsomedial frontal region. Both semantic and phonemic fluency tests depended on verbal output abilities and processing speed with similar slopes in different languages. The strategic search process depended on Broca's area, F2 and related tracts, temporal and deep regions. Lastly, the lesion map of set-shifting did not overlap with those of strategic word search processes. INTERPRETATION: Our results identify the anatomical substrates of two main executive processes, revealing that they represent only a specific subpart of previously reported structures. Finally, our results indicate that executive functions depend on several specific, anatomically separable executive processes mainly operating in various parts of the frontal lobes.


Asunto(s)
Función Ejecutiva , Accidente Cerebrovascular , Prueba de Secuencia Alfanumérica , Humanos , Función Ejecutiva/fisiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/fisiopatología , Conducta Verbal/fisiología , Mapeo Encefálico , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/patología , Adulto
7.
J Stroke ; 26(2): 300-311, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38836277

RESUMEN

BACKGROUND AND PURPOSE: Accurate classification of ischemic stroke subtype is important for effective secondary prevention of stroke. We used diffusion-weighted image (DWI) and atrial fibrillation (AF) data to train a deep learning algorithm to classify stroke subtype. METHODS: Model development was done in 2,988 patients with ischemic stroke from three centers by using U-net for infarct segmentation and EfficientNetV2 for subtype classification. Experienced neurologists (n=5) determined subtypes for external test datasets, while establishing a consensus for clinical trial datasets. Automatically segmented infarcts were fed into the model (DWI-only algorithm). Subsequently, another model was trained, with AF included as a categorical variable (DWI+AF algorithm). These models were tested: (1) internally against the opinion of the labeling experts, (2) against fresh external DWI data, and (3) against clinical trial dataset. RESULTS: In the training-and-validation datasets, the mean (±standard deviation) age was 68.0±12.5 (61.1% male). In internal testing, compared with the experts, the DWI-only and the DWI+AF algorithms respectively achieved moderate (65.3%) and near-strong (79.1%) agreement. In external testing, both algorithms again showed good agreements (59.3%-60.7% and 73.7%-74.0%, respectively). In the clinical trial dataset, compared with the expert consensus, percentage agreements and Cohen's kappa were respectively 58.1% and 0.34 for the DWI-only vs. 72.9% and 0.57 for the DWI+AF algorithms. The corresponding values between experts were comparable (76.0% and 0.61) to the DWI+AF algorithm. CONCLUSION: Our model trained on a large dataset of DWI (both with or without AF information) was able to classify ischemic stroke subtypes comparable to a consensus of stroke experts.

8.
Biol Res ; 57(1): 25, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720397

RESUMEN

PURPOSE: Prostate cancer (PCa) is a major urological disease that is associated with significant morbidity and mortality in men. LLGL2 is the mammalian homolog of Lgl. It acts as a tumor suppressor in breast and hepatic cancer. However, the role of LLGL2 and the underlying mechanisms in PCa have not yet been elucidated. Here, we investigate the role of LLGL2 in the regulation of epithelial-mesenchymal transition (EMT) in PCa through autophagy in vitro and in vivo. METHODS: PC3 cells were transfected with siLLGL2 or plasmid LLGL2 and autophagy was examined. Invasion, migration, and wound healing were assessed in PC3 cells under autophagy regulation. Tumor growth was evaluated using a shLLGL2 xenograft mouse model. RESULTS: In patients with PCa, LLGL2 levels were higher with defective autophagy and increased EMT. Our results showed that the knockdown of LLGL2 induced autophagy flux by upregulating Vps34 and ATG14L. LLGL2 knockdown inhibits EMT by upregulating E-cadherin and downregulating fibronectin and α-SMA. The pharmacological activation of autophagy by rapamycin suppressed EMT, and these effects were reversed by 3-methyladenine treatment. Interestingly, in a shLLGL2 xenograft mouse model, tumor size and EMT were decreased, which were improved by autophagy induction and worsened by autophagy inhibition. CONCLUSION: Defective expression of LLGL2 leads to attenuation of EMT due to the upregulation of autophagy flux in PCa. Our results suggest that LLGL2 is a novel target for alleviating PCa via the regulation of autophagy.


Asunto(s)
Autofagia , Transición Epitelial-Mesenquimal , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Autofagia/fisiología , Autofagia/genética , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Silenciador del Gen , Ratones Desnudos , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
9.
Brain Commun ; 6(3): fcae129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707712

RESUMEN

Stroke is the leading cause of long-term disability worldwide. Incurred brain damage can disrupt cognition, often with persisting deficits in language and executive capacities. Yet, despite their clinical relevance, the commonalities and differences between language versus executive control impairments remain under-specified. To fill this gap, we tailored a Bayesian hierarchical modelling solution in a largest-of-its-kind cohort (1080 patients with stroke) to deconvolve language and executive control with respect to the stroke topology. Cognitive function was assessed with a rich neuropsychological test battery including global cognitive function (tested with the Mini-Mental State Exam), language (assessed with a picture naming task), executive speech function (tested with verbal fluency tasks), executive control functions (Trail Making Test and Digit Symbol Coding Task), visuospatial functioning (Rey Complex Figure), as well as verbal learning and memory function (Soul Verbal Learning). Bayesian modelling predicted interindividual differences in eight cognitive outcome scores three months after stroke based on specific tissue lesion topologies. A multivariate factor analysis extracted four distinct cognitive factors that distinguish left- and right-hemispheric contributions to ischaemic tissue lesions. These factors were labelled according to the neuropsychological tests that had the strongest factor loadings: One factor delineated language and general cognitive performance and was mainly associated with damage to left-hemispheric brain regions in the frontal and temporal cortex. A factor for executive control summarized mental flexibility, task switching and visual-constructional abilities. This factor was strongly related to right-hemispheric brain damage of posterior regions in the occipital cortex. The interplay of language and executive control was reflected in two distinct factors that were labelled as executive speech functions and verbal memory. Impairments on both factors were mainly linked to left-hemispheric lesions. These findings shed light onto the causal implications of hemispheric specialization for cognition; and make steps towards subgroup-specific treatment protocols after stroke.

10.
Int J Stroke ; 19(8): 916-924, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38651756

RESUMEN

BACKGROUND: Post-stroke cognitive impairment (PSCI) occurs in up to 50% of stroke survivors. Presence of pre-existing vascular brain injury, in particular the extent of white matter hyperintensities (WMH), is associated with worse cognitive outcome after stroke, but the role of WMH location in this association is unclear. AIMS: We determined if WMH in strategic white matter tracts explain cognitive performance after stroke. METHODS: Individual patient data from nine ischemic stroke cohorts with magnetic resonance imaging (MRI) were harmonized through the Meta VCI Map consortium. The association between WMH volumes in strategic tracts and domain-specific cognitive functioning (attention and executive functioning, information processing speed, language and verbal memory) was assessed using linear mixed models and lasso regression. We used a hypothesis-driven design, primarily addressing four white matter tracts known to be strategic in memory clinic patients: the left and right anterior thalamic radiation, forceps major, and left inferior fronto-occipital fasciculus. RESULTS: The total study sample consisted of 1568 patients (39.9% female, mean age = 67.3 years). Total WMH volume was strongly related to cognitive performance on all four cognitive domains. WMH volume in the left anterior thalamic radiation was significantly associated with cognitive performance on attention and executive functioning and information processing speed and WMH volume in the forceps major with information processing speed. The multivariable lasso regression showed that these associations were independent of age, sex, education, and total infarct volume and had larger coefficients than total WMH volume. CONCLUSION: These results show tract-specific relations between WMH volume and cognitive performance after ischemic stroke, independent of total WMH volume. This implies that the concept of strategic lesions in PSCI extends beyond acute infarcts and also involves pre-existing WMH. DATA ACCESS STATEMENT: The Meta VCI Map consortium is dedicated to data sharing, following our guidelines.


Asunto(s)
Disfunción Cognitiva , Imagen por Resonancia Magnética , Accidente Cerebrovascular , Sustancia Blanca , Humanos , Femenino , Masculino , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Anciano , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/psicología , Accidente Cerebrovascular/patología , Persona de Mediana Edad , Pruebas Neuropsicológicas
11.
Sci Rep ; 14(1): 7986, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38575660

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has profoundly impacted vulnerable groups, such as patients with dementia. We examined changes in mortality and loss to follow-up in patients with dementia using data from the Korean National Health Insurance Service research database. Patients with dementia who visited a medical institution with a recorded dementia-related diagnostic code, including Alzheimer's disease, and who received anti-dementia medication between February 2018 and January 2020 were included in this study. We divided patients with dementia receiving anti-dementia medications into two cohorts: those newly diagnosed with dementia between February 2018 and January 2019 (n = 62,631) and those diagnosed between February 2019 and January 2020 (n = 54,494). Then, we conducted a one-year follow-up of their records, tracking the cohort diagnosed between February 2018 and January 2019 from February 2019 to January 2020, as well as the cohort diagnosed between February 2019 and January 2020 from February 2020 to January 2021. There was a significant increase in follow-up loss among patients newly diagnosed with dementia during the COVID-19 outbreak, from 42.04% in 2019 to 45.89% in 2020. Female sex, younger age, fewer comorbidities, diagnosis of dementia at the Department of Neurology or Psychiatry, and higher income were associated with decreased follow-up loss and mortality. This study highlights the importance of paying extra attention to patients with dementia receiving anti-dementia medications, particularly during pandemics, given their increased risk of loss to follow-up.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Humanos , Femenino , COVID-19/epidemiología , Pandemias , Estudios de Seguimiento , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/epidemiología , Comorbilidad
12.
Biomater Res ; 28: 0008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532906

RESUMEN

Background: Cancer recurrence and metastasis are major contributors to treatment failure following tumor resection surgery. We developed a novel implantable drug delivery system utilizing glycol chitosan to address these issues. Glycol chitosan is a natural adjuvant, inducing dendritic cell activation to promote T helper 1 cell immune responses, macrophage activation, and cytokine production. Effective antigen production by dendritic cells initiates T-cell-mediated immune responses, aiding tumor growth control. Methods: In this study, we fabricated multifunctional methacrylated glycol chitosan (MGC) hydrogels with extended release of DNA/doxorubicin (DOX) complex for cancer immunotherapy. We constructed the resection model of breast cancer to verify the anticancer effects of MGC hydrogel with DNA/DOX complex. Results: This study demonstrated the potential of MGC hydrogel with extended release of DNA/DOX complex for local and efficient cancer therapy. The MGC hydrogel was implanted directly into the surgical site after tumor resection, activating tumor-related immune cells both locally and over a prolonged period of time through immune-reactive molecules. Conclusions: The MGC hydrogel effectively suppressed tumor recurrence and metastasis while enhancing immunotherapeutic efficacy and minimizing side effects. This biomaterial-based drug delivery system, combined with cancer immunotherapy, can substantial improve treatment outcomes and patient prognosis.

13.
Sci Rep ; 14(1): 4215, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378772

RESUMEN

Quantification of diffusion restriction lesions in sporadic Creutzfeldt-Jakob disease (sCJD) may provide information of the disease burden. We aim to develop an automatic segmentation model for sCJD and to evaluate the volume of disease extent as a prognostic marker for overall survival. Fifty-six patients (mean age ± SD, 61.2 ± 9.9 years) were included from February 2000 to July 2020. A threshold-based segmentation was used to obtain abnormal signal intensity masks. Segmented volumes were compared with the visual grade. The Dice similarity coefficient was calculated to measure the similarity between the automatic vs. manual segmentation. Cox proportional hazards regression analysis was performed to evaluate the volume of disease extent as a prognostic marker. The automatic segmentation showed good correlation with the visual grading. The cortical lesion volumes significantly increased as the visual grade aggravated (extensive: 112.9 ± 73.2; moderate: 45.4 ± 30.4; minimal involvement: 29.6 ± 18.1 mm3) (P < 0.001). The deep gray matter lesion volumes were significantly higher for positive than for negative involvement of the deep gray matter (5.6 ± 4.6 mm3 vs. 1.0 ± 1.3 mm3, P < 0.001). The mean Dice similarity coefficients were 0.90 and 0.94 for cortical and deep gray matter lesions, respectively. However, the volume of disease extent was not associated with worse overall survival (cortical extent: P = 0.07; deep gray matter extent: P = 0.12).


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Sustancia Gris , Humanos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Síndrome de Creutzfeldt-Jakob/patología , Imagen de Difusión por Resonancia Magnética/métodos , Algoritmos , Imagen por Resonancia Magnética/métodos
14.
Dement Neurocogn Disord ; 23(1): 54-66, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38362056

RESUMEN

Background and Purpose: Dementia subtypes, including Alzheimer's dementia (AD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD), pose diagnostic challenges. This review examines the effectiveness of 18F-Fluorodeoxyglucose Positron Emission Tomography (18F-FDG PET) in differentiating these subtypes for precise treatment and management. Methods: A systematic review following Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines was conducted using databases like PubMed and Embase to identify studies on the diagnostic utility of 18F-FDG PET in dementia. The search included studies up to November 16, 2022, focusing on peer-reviewed journals and applying the gold-standard clinical diagnosis for dementia subtypes. Results: From 12,815 articles, 14 were selected for final analysis. For AD versus FTD, the sensitivity was 0.96 (95% confidence interval [CI], 0.88-0.98) and specificity was 0.84 (95% CI, 0.70-0.92). In the case of AD versus DLB, 18F-FDG PET showed a sensitivity of 0.93 (95% CI 0.88-0.98) and specificity of 0.92 (95% CI, 0.70-0.92). Lastly, when differentiating AD from non-AD dementias, the sensitivity was 0.86 (95% CI, 0.80-0.91) and the specificity was 0.88 (95% CI, 0.80-0.91). The studies mostly used case-control designs with visual and quantitative assessments. Conclusions: 18F-FDG PET exhibits high sensitivity and specificity in differentiating dementia subtypes, particularly AD, FTD, and DLB. This method, while not a standalone diagnostic tool, significantly enhances diagnostic accuracy in uncertain cases, complementing clinical assessments and structural imaging.

15.
Neurology ; 102(1): e207795, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165371

RESUMEN

BACKGROUND AND OBJECTIVES: Visible perivascular spaces are an MRI marker of cerebral small vessel disease and might predict future stroke. However, results from existing studies vary. We aimed to clarify this through a large collaborative multicenter analysis. METHODS: We pooled individual patient data from a consortium of prospective cohort studies. Participants had recent ischemic stroke or transient ischemic attack (TIA), underwent baseline MRI, and were followed up for ischemic stroke and symptomatic intracranial hemorrhage (ICH). Perivascular spaces in the basal ganglia (BGPVS) and perivascular spaces in the centrum semiovale (CSOPVS) were rated locally using a validated visual scale. We investigated clinical and radiologic associations cross-sectionally using multinomial logistic regression and prospective associations with ischemic stroke and ICH using Cox regression. RESULTS: We included 7,778 participants (mean age 70.6 years; 42.7% female) from 16 studies, followed up for a median of 1.44 years. Eighty ICH and 424 ischemic strokes occurred. BGPVS were associated with increasing age, hypertension, previous ischemic stroke, previous ICH, lacunes, cerebral microbleeds, and white matter hyperintensities. CSOPVS showed consistently weaker associations. Prospectively, after adjusting for potential confounders including cerebral microbleeds, increasing BGPVS burden was independently associated with future ischemic stroke (versus 0-10 BGPVS, 11-20 BGPVS: HR 1.19, 95% CI 0.93-1.53; 21+ BGPVS: HR 1.50, 95% CI 1.10-2.06; p = 0.040). Higher BGPVS burden was associated with increased ICH risk in univariable analysis, but not in adjusted analyses. CSOPVS were not significantly associated with either outcome. DISCUSSION: In patients with ischemic stroke or TIA, increasing BGPVS burden is associated with more severe cerebral small vessel disease and higher ischemic stroke risk. Neither BGPVS nor CSOPVS were independently associated with future ICH.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Ataque Isquémico Transitorio , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Femenino , Anciano , Masculino , Pronóstico , Ataque Isquémico Transitorio/complicaciones , Ataque Isquémico Transitorio/diagnóstico por imagen , Estudios Prospectivos , Hemorragias Intracraneales , Accidente Cerebrovascular/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Imagen por Resonancia Magnética , Hemorragia Cerebral
16.
Biol. Res ; 572024.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1564040

RESUMEN

Purpose Prostate cancer (PCa) is a major urological disease that is associated with significant morbidity and mortality in men. LLGL2 is the mammalian homolog of Lgl. It acts as a tumor suppressor in breast and hepatic cancer. However, the role of LLGL2 and the underlying mechanisms in PCa have not yet been elucidated. Here, we investigate the role of LLGL2 in the regulation of epithelial-mesenchymal transition (EMT) in PCa through autophagy in vitro and in vivo. Methods PC3 cells were transfected with siLLGL2 or plasmid LLGL2 and autophagy was examined. Invasion, migration, and wound healing were assessed in PC3 cells under autophagy regulation. Tumor growth was evaluated using a shLLGL2 xenograft mouse model. Results In patients with PCa, LLGL2 levels were higher with defective autophagy and increased EMT. Our results showed that the knockdown of LLGL2 induced autophagy flux by upregulating Vps34 and ATG14L. LLGL2 knockdown inhibits EMT by upregulating E-cadherin and downregulating fibronectin and α-SMA. The pharmacological activation of autophagy by rapamycin suppressed EMT, and these effects were reversed by 3-methyladenine treatment. Interestingly, in a shLLGL2 xenograft mouse model, tumor size and EMT were decreased, which were improved by autophagy induction and worsened by autophagy inhibition. Conclusion Defective expression of LLGL2 leads to attenuation of EMT due to the upregulation of autophagy flux in PCa. Our results suggest that LLGL2 is a novel target for alleviating PCa via the regulation of autophagy.

18.
Sci Rep ; 13(1): 21328, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38044360

RESUMEN

Normal pressure hydrocephalus (NPH) patients had altered white matter tract integrities on diffusion tensor imaging (DTI). Previous studies suggested disproportionately enlarged subarachnoid space hydrocephalus (DESH) as a prognostic sign of NPH. We examined DTI indices in NPH subgroups by DESH severity and clinical symptoms. This retrospective case-control study included 33 NPH patients and 33 age-, sex-, and education-matched controls. The NPH grading scales (0-12) were used to rate neurological symptoms. Patients with NPH were categorized into two subgroups, high-DESH and low-DESH groups, by the average value of the DESH scale. DTI indices, including fractional anisotropy, were compared across 14 regions of interest (ROIs). The high-DESH group had increased axial diffusivity in the lateral side of corona radiata (1.43 ± 0.25 vs. 1.72 ± 0.25, p = 0.04), and showed decreased fractional anisotropy and increased mean, and radial diffusivity in the anterior and lateral sides of corona radiata and the periventricular white matter surrounding the anterior horn of lateral ventricle. In patients with a high NPH grading scale, fractional anisotropy in the white matter surrounding the anterior horn of the lateral ventricle was significantly reduced (0.36 ± 0.08 vs. 0.26 ± 0.06, p = 0.03). These data show that DESH may be a biomarker for DTI-detected microstructural alterations and clinical symptom severity.


Asunto(s)
Hidrocéfalo Normotenso , Hidrocefalia , Sustancia Blanca , Humanos , Hidrocéfalo Normotenso/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Sustancia Blanca/diagnóstico por imagen , Estudios de Casos y Controles , Estudios Retrospectivos , Anisotropía , Hidrocefalia/diagnóstico por imagen
19.
Small ; : e2304862, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38050931

RESUMEN

Atopic dermatitis (AD) is a widespread, recurrent, and chronic inflammatory skin condition that imposes a major burden on patients. Conventional treatments, such as corticosteroids, are associated with various side effects, underscoring the need for innovative therapeutic approaches. In this study, the possibility of using indole-3-acetic acid-loaded layered double hydroxides (IAA-LDHs) is evaluated as a novel treatment for AD. IAA is an auxin-class plant hormone with antioxidant and anti-inflammatory effects. Following the synthesis of IAA-LDH nanohybrids, their ability to induce M2-like macrophage polarization in macrophages obtained from mouse bone marrow is assessed. The antioxidant activity of IAA-LDH is quantified by assessing the decrease in intracellular reactive oxygen species levels. The anti-inflammatory and anti-atopic characteristics of IAA-LDH are evaluated in a mouse model of AD by examining the cutaneous tissues, immunological organs, and cells. The findings suggest that IAA-LDH has great therapeutic potential as a candidate for AD treatment based on its in vitro and in vivo modulation of AD immunology, enhancement of macrophage polarization, and antioxidant activity. This inorganic drug delivery technology represents a promising new avenue for the development of safe and effective AD treatments.

20.
Nutrients ; 15(21)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37960323

RESUMEN

BACKGROUND: We aimed to investigate the association between the ApoB/ApoA-I ratio and post-stroke cognitive impairment (PSCI) in patients with acute stroke of large artery atherosclerosis etiology. METHODS: Prospective stroke registry data were used to consecutively enroll patients with acute ischemic stroke due to large artery atherosclerosis. Cognitive function assessments were conducted 3 to 6 months after stroke. PSCI was defined as a z-score of less than -2 standard deviations from age, sex, and education-adjusted means in at least one cognitive domain. The ApoB/ApoA-I ratio was calculated, and patients were categorized into five groups according to quintiles of the ratio. Logistic regression analyses were performed to assess the association between quintiles of the ApoB/ApoA-I ratio and PSCI. RESULTS: A total of 263 patients were included, with a mean age of 65.9 ± 11.6 years. The median NIHSS score and ApoB/ApoA-I ratio upon admission were 2 (IQR, 1-5) and 0.81 (IQR, 0.76-0.88), respectively. PSCI was observed in 91 (34.6%) patients. The highest quintile (Q5) of the ApoB/ApoA-I ratio was a significant predictor of PSCI compared to the lowest quintile (Q1) (adjusted OR, 3.16; 95% CI, 1.19-8.41; p-value = 0.021) after adjusting for relevant confounders. Patients in the Q5 group exhibited significantly worse performance in the frontal domain. CONCLUSIONS: The ApoB/ApoA-I ratio in the acute stage of stroke independently predicted the development of PSCI at 3-6 months after stroke due to large artery atherosclerosis. Further, a high ApoB/ApoA-I ratio was specifically associated with frontal domain dysfunction.


Asunto(s)
Aterosclerosis , Disfunción Cognitiva , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Persona de Mediana Edad , Anciano , Accidente Cerebrovascular Isquémico/complicaciones , Apolipoproteína A-I , Apolipoproteínas B , Accidente Cerebrovascular/etiología , Aterosclerosis/complicaciones , Arterias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...