Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Tissue Eng Regen Med ; 20(3): 411-433, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37060487

RESUMEN

Nanoscale biomaterials have garnered immense interest in the scientific community in the recent decade. This review specifically focuses on the application of three nanomaterials, i.e., graphene and its derivatives (graphene oxide, reduced graphene oxide), carbon nanotubes (CNTs) and nanocellulose (cellulose nanocrystals or CNCs and cellulose nanofibers or CNFs), in regenerating different types of tissues, including skin, cartilage, nerve, muscle and bone. Their excellent inherent (and tunable) physical, chemical, mechanical, electrical, thermal and optical properties make them suitable for a wide range of biomedical applications, including but not limited to diagnostics, therapeutics, biosensing, bioimaging, drug and gene delivery, tissue engineering and regenerative medicine. A state-of-the-art literature review of composite tissue scaffolds fabricated using these nanomaterials is provided, including the unique physicochemical properties and mechanisms that induce cell adhesion, growth, and differentiation into specific tissues. In addition, in vitro and in vivo cytotoxic effects and biodegradation behavior of these nanomaterials are presented. We also discuss challenges and gaps that still exist and need to be addressed in future research before clinical translation of these promising nanomaterials can be realized in a safe, efficacious, and economical manner.


Asunto(s)
Grafito , Nanoestructuras , Nanotubos de Carbono , Ingeniería de Tejidos/métodos , Nanotubos de Carbono/química , Grafito/química , Nanoestructuras/química , Celulosa/química
3.
J Control Release ; 357: 94-108, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931470

RESUMEN

Cancer stem cells (CSCs) possess the ability to indefinitely proliferate and resist therapy, leading to cancer relapse and metastasis. To address this, we aimed to develop a CSC-inclusive therapy that targets both CSCs and non-CSC glioblastoma (GBM) cells. We accomplished this by using a smoothened (SMO) CRISPR/Cas9 plasmid to suppress the hedgehog pathway in CSCs, in combination with inhibiting the serine hydroxymethyl transferase 1 (SHMT1)-driven thymidylate biosynthesis pathway in non-CSC GBM cells using SHMT1 siRNA (siSHMT1). We targeted CSCs using a CD133 peptide attached to an osmotically active vitamin B6-coupled polydixylitol vector (VPX-CD133) by a photoactivatable heterobifunctional linker. VPX-CD133 nanocomplexes in comparison to VPX complexes remarkably targeted and transfected CSCs both in vitro and in subcutaneous tumor. The VPX-CD133-mediated targeted delivery of SMO CRISPR in CSCs led to SMO suppression that negatively affected its growth. Next, we performed comprehensive therapy in xenograft mice using VPX-CD133, which delivered SMO-CRISPR to CSCs, and VPX, which delivered siSHMT1 to non-CSC GBM cells. The combined treatment induced apoptosis in a large number of cells, reduced tumor volume by up to 81%, and improved the health of treated mice significantly. By eliminating CSCs together with the non-CSC GBM cells, the combined study paves the way for developing CSC-inclusive therapies for GBM.


Asunto(s)
Glioblastoma , Proteínas Hedgehog , Humanos , Animales , Ratones , Proteínas Hedgehog/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , ARN Interferente Pequeño/metabolismo , Apoptosis , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Antígeno AC133 , Receptor Smoothened/metabolismo
4.
Bioact Mater ; 6(9): 2742-2751, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33665505

RESUMEN

Hydroxyapatite (HA) is a representative substance that induces bone regeneration. Our research team extracted nanohydroxyapatite (EH) from natural resources, especially equine bones, and developed it as a molecular biological tool. Polyethylenimine (PEI) was used to coat the EH to develop a gene carrier. To verify that PEI is well coated in the EH, we first observed the morphology and dispersity of PEI-coated EH (pEH) by electron microscopy. The pEH particles were well distributed, while only the EH particles were not distributed and aggregated. Then, the existence of nitrogen elements of PEI on the surface of the pEH was confirmed by EDS, calcium concentration measurement and fourier transform infrared spectroscopy (FT-IR). Additionally, the pEH was confirmed to have a more positive charge than the 25 kD PEI by comparing the zeta potentials. As a result of pGL3 transfection, pEH was better able to transport genes to cells than 25 kD PEI. After verification as a gene carrier for pEH, we induced osteogenic differentiation of DPSCs by loading the BMP-2 gene in pEH (BMP-2/pEH) and delivering it to the cells. As a result, it was confirmed that osteogenic differentiation was promoted by showing that the expression of osteopontin (OPN), osteocalcin (OCN), and runt-related transcription factor 2 (RUNX2) was significantly increased in the group treated with BMP-2/pEH. In conclusion, we have not only developed a novel nonviral gene carrier that is better performing and less toxic than 25 kD PEI by modifying natural HA (the agricultural byproduct) but also proved that bone differentiation can be effectively promoted by delivering BMP-2 with pEH to stem cells.

5.
Biomater Sci ; 6(2): 364-371, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29293256

RESUMEN

Damage to the eardrum causes acute pain and can lead to chronic otitis media if it develops into chronic tympanic membrane (TM) perforations. Chronic TM perforations are usually treated with surgical methods such as tympanoplasty and myringoplasty. However, these surgeries are not only complicated and difficult but also cost a lot of money. Our research team developed chitosan patches (E-CPs) that release epidermal growth factor (EGF) as a patch therapy to replace surgical methods. However, there was a limitation in the healing ratio of the treatment compared to the surgical methods. In this study, we developed EGF and epidermal growth factor receptor (EGFR) gene-releasing polyethyleneimine (PEI)/chitosan patches (EErP-CPs) to increase the regeneration of TM perforations. The addition of PEI increased the adhesion and migration ability of TM cells on the patches. The simultaneous release of the EGF and the EGFR gene further enhanced TM cell proliferation, adhesion and migratory ability. It was confirmed that the EGF protein and EGFR gene were released for 30 days; however, EGF was released and increased TM cell viability almost immediately after treatment and EGFR took a minimum of 3 days before showing its effect on improved cell viability. It was also shown that EErP-CPs are more hydrophilic and have more positive charge than E-CP because of added amine groups from PEI. In conclusion, the developed EErP-CPs resulted in the improved healing of TM perforations and can potentially be applied to the regeneration of both chronic and acute tympanic membrane perforations.


Asunto(s)
Portadores de Fármacos/química , Factor de Crecimiento Epidérmico/administración & dosificación , Regeneración , Perforación de la Membrana Timpánica/tratamiento farmacológico , Membrana Timpánica/efectos de los fármacos , Animales , Adhesión Celular , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Quitosano/química , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/uso terapéutico , Polietileneimina/química , Ratas , Ratas Sprague-Dawley , Membrana Timpánica/citología , Membrana Timpánica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...