Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Oncol Rep ; 52(2)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38904203

RESUMEN

Monopolar spindle 1 kinase (Mps1, also known as TTK protein kinase) inhibitors exert marked anticancer effects against triple­negative breast cancer (TNBC) by causing genomic instability and cell death. As aneuploid cells are vulnerable to compounds that induce energy stress through adenosine monophosphate­activated protein kinase (AMPK) activation, the synergistic effect of Mps1/TTK inhibition and AMPK activation was investigated in the present study. The combined effects of CFI­402257, an Mps1/TTK inhibitor, and AICAR, an AMPK agonist, were evaluated in terms of cytotoxicity, cell­cycle distribution, and in vivo xenograft models. Additional molecular mechanistic studies were conducted to elucidate the mechanisms underlying apoptosis and autophagic cell death. The combination of CFI­402257 and AICAR showed selective cytotoxicity in a TNBC cell line. The formation of polyploid cells was attenuated, and apoptosis was increased by the combination treatment, which also induced autophagy through dual inhibition of the PI3K/Akt/mTOR and mitogen­activated protein kinase (MAPK) signaling pathways. Additionally, the combination therapy showed strongly improved efficacy in comparison with CFI­402257 and AICAR monotherapy in the MDA­MB­231 xenograft model. The present study suggested that the combination of CFI­402257 and AICAR is a promising therapeutic strategy for TNBC.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Aminoimidazol Carboxamida , Apoptosis , Autofagia , Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinasas , Ribonucleótidos , Neoplasias de la Mama Triple Negativas , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Humanos , Femenino , Animales , Ratones , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular Tumoral , Ribonucleótidos/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sinergismo Farmacológico , Compuestos de Bifenilo , Pironas , Tiofenos
2.
Oncol Rep ; 49(2)2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36633143

RESUMEN

Astilbe chinensis (A. chinensis) is a perennial herb that is used to treat chronic bronchitis and pain. The anticancer activity of 3ß,6ß­dihydroxyurs­12­en­27­oic acid (ACT­3), a major component isolated from A. chinensis, has not yet been investigated in detail. The purpose of the present study was to investigate the histone deacetylase (HDAC) inhibitory and anticancer activities of ACT­3 compared with suberoylanilide hydroxamic acid (SAHA) in MCF­7 human breast cancer cells. The purity of ACT­3 was determined using high­performance liquid chromatography. In the present study, the effects of ACT­3 on anticancer effects of MCF­7 cells were determined by measuring the level of apoptotic cell death and cell cycle regulator using flow cytometry analysis and western blot analysis, respectively. The effects of ACT­3 on HDAC enzyme activity were measured using assay kits. ACT­3 and SAHA increased the levels of acetylated histone H3 and reduced the levels of HDAC1 and HDAC3 in MCF­7 cells. ACT­3 significantly decreased the cell viability in a concentration­dependent manner and induced different morphological changes at high concentrations. ACT­3 and SAHA significantly inhibited the colony formation in MCF­7 cells. ACT­3 inhibited total HDAC activity in a dose­dependent manner. ACT­3 significantly reduced the expression levels of cyclin D1 and cyclin­dependent kinase 4, and upregulated the expression levels of p21WAF1 and p53. A significant increase in the G1 phase cell population was observed in MCF­7 cells and ACT­3 induced apoptosis by reducing the ratio of B­cell lymphoma­2 (Bcl­2)/Bcl­2­associated X (Bax) and releasing cleaved caspase 9. Additionally, ACT­3 significantly increased autophagic cell death by inhibiting the serine­threonine kinase/mammalian target of the rapamycin pathway. Autophagy induction was confirmed via acridine orange staining. ACT­3 significantly increased the pERK1/2 and p21 in MCF­7 cells. Thus, the activated ERK pathway played an important role in cell cycle arrest and apoptosis via ERK­dependent induction of p21 in MCF­7 cells. These data indicated that ACT­3 can be used as a promising anticancer agent to overcome the limitations and reduce the side effects of conventional anticancer drugs.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Inhibidores de Histona Desacetilasas , Saxifragaceae , Femenino , Humanos , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Inhibidores de Histona Desacetilasas/aislamiento & purificación , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Células MCF-7 , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-bcl-2 , Serina-Treonina Quinasas TOR , Vorinostat/farmacología , Vorinostat/uso terapéutico , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Saxifragaceae/química
3.
Neurochem Res ; 47(12): 3829-3837, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36309631

RESUMEN

Selonsertib is a first-in-class apoptosis signal-regulating kinase 1 (ASK1) inhibitor in clinical trials for treating NASH and diabetic kidney disease due to its anti-inflammatory and anti-fibrotic activities. In the present study, we investigated the anti-neuroinflammatory effects and brain pharmacokinetic properties of selonsertib. It inhibited inflammatory cytokines and NO production by suppressing phosphorylated ASK1 in the LPS-stimulated microglial cell line, BV2 cells. Consistent with the in vitro results, selonsertib attenuated plasma and brain TNF-α levels in the LPS-induced murine neuroinflammation model. In vitro and in vivo pharmacokinetic studies of selonsertib were conducted in support of central nervous system (CNS) drug discovery. In both Caco-2 and MDR-MDCK cells, selonsertib exhibited a high efflux ratio, showing that it is a P-gp substrate. Selonsertib was rapidly and effectively absorbed into the systemic circulation after oral treatment, with a Tmax of 0.5 h and oral bioavailability of 74%. In comparison with high systemic exposure with Cmax of 16.2 µg/ml and AUC of 64 µg·h/mL following oral dosing of 10 mg/kg, the brain disposition of selonsertib was limited, with Cmax of 0.08 µg/g and Kp value of 0.004. This study demonstrates that selonsertib can be a therapeutic agent for neuroinflammatory diseases.


Asunto(s)
Lipopolisacáridos , MAP Quinasa Quinasa Quinasa 5 , Animales , Ratones , Encéfalo/metabolismo , Células CACO-2 , Lipopolisacáridos/farmacología , MAP Quinasa Quinasa Quinasa 5/metabolismo , MAP Quinasa Quinasa Quinasa 5/farmacología , Microglía/metabolismo
4.
J Toxicol Environ Health A ; 81(11): 421-431, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29557728

RESUMEN

Triclosan (TCS), a common antimicrobial ingredient, is present in many consumer products, including soaps, shampoos, and toothpaste. Owing to its widespread use, potential adverse effects on animals and humans may arise from lifetime exposure, but data on chronic prepubertal exposure of TCS are still lacking. The aim of the present study was to investigate the influence of subchronic TCS exposure (0.25, 25, 250, or 750 mg/kg) on target organ toxicity in prepubertal male rats. After daily administration of TCS to rats by oral gavage for 60 d, a significant reduction in body weight and relative weights of liver, kidneys, testes, and adrenal glands was observed in the 750-mg/kg (high dose) group. Serum alanine aminotransferase and aspartate aminotransferase activities as well as levels of blood urea nitrogen, and creatinine were significantly increased at 750 mg/kg TCS. Further, TCS (750 mg/kg) elevated the protein expressions of hepatic CYP2B1, RXR/PPAR, and levels of malondialdehyde. High-dose TCS exposure induced histological changes as evidenced by reduction of Bowman's space, occlusion of the tubular lumen, and degeneration of tubular epithelial cells in the kidney. Tubular necrosis was confirmed as evidenced by a rise in expression of high mobility group box 1 renal protein. Daily sperm production was significantly diminished by high doses of TCS with marked inhibition of androgen receptor protein expression. Our results indicated that subchronic exposure to excessively high concentrations of 750 mg/kg TCS induced hepatorenal and reproductive toxicities in prepubertal male rats; however, the biological relevance of these findings is questionable as these drug levels are not encountered in the environment.


Asunto(s)
Glándulas Suprarrenales/efectos de los fármacos , Antiinfecciosos Locales/toxicidad , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Reproducción/efectos de los fármacos , Triclosán/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Testículo/efectos de los fármacos , Pruebas de Toxicidad Subcrónica
5.
Food Chem Toxicol ; 114: 34-40, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29421648

RESUMEN

Chronic exposure to cadmium (Cd) causes remarkable damage to the kidneys, a target organ of accumulated Cd after oral administration. The aim of the present study was to investigate the protective effect of curcumin against Cd-induced nephrotoxicity. Sprague-Dawley male rats were divided into the following four treatment groups: control, curcumin (50 mg/kg, oral), CdCl2, (25 mg/kg, oral), and pre-treatment with curcumin (50 mg/kg) 1 h prior to the administration of CdCl2 (25 mg/kg, oral) for 7 days. At 24 h after the final treatment, the animals were killed, and the biomarkers associated with nephrotoxicity were measured. Our data indicated that blood urea nitrogen (BUN) and serum creatinine (sCr) levels were significantly reduced by curcumin pre-treatment in CdCl2-treated animals. Histopathological studies showed hydropic swelling and hypertrophy of the proximal tubular cells in the renal cortex after Cd treatment. Pretreatment with curcumin ameliorated the histological alterations induced by Cd. The urinary excretion of kidney injury molecule-1 (Kim-1), osteopontin (OPN), tissue inhibitor of metalloproteinases 1 (TIMP-1), neutrophil gelatinase-associated lipocalin (NGAL), and netrin-1 significantly reduced by curcumin treatment compared to that in the CdCl2-treated group. The administration of curcumin provided a significant protective effect against Cd-induced nephrotoxicity.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Cadmio/toxicidad , Curcumina/administración & dosificación , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/fisiopatología , Animales , Apoptosis/efectos de los fármacos , Receptor Celular 1 del Virus de la Hepatitis A/genética , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/fisiopatología , Masculino , Osteopontina/genética , Osteopontina/metabolismo , Ratas , Ratas Sprague-Dawley , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo
6.
Oncotarget ; 8(53): 91481-91493, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29207659

RESUMEN

Tyrosinase is a key player in ultraviolet-induced melanogenesis. Because excessive melanin accumulation in the skin can induce hyperpigmentation, the development of tyrosinase inhibitors has attracted attention in cosmetic-related fields. However, side effects including toxicity and low selectivity have limited the use of many tyrosinase inhibitors in cosmetics. We synthesized 12 novel 2-(substituted benzylidene)malononitrile derivatives and investigated their anti-melanogenic activities. Of these 12 compounds, 2-(3, 4-dihydroxy benzylidene)malononitrile (BMN11) exhibited the strongest inhibitory activity against tyrosinase (IC50 = 17.05 µM). In parallel with this, BMN11 treatment notably decreased alpha-melanocyte-stimulating hormone-induced melanin accumulation in B16F10, cells without toxicity and also decreased melanin accumulation in a human skin model. As a mechanism underlying the BMN11-mediated anti-melanogenic effect, docking simulation showed that BMN11 can directly bind to tyrosinase by forming two hydrogen bonds with GLY281 and ASN260 residues, and via three hydrophobic interactions with VAL283, PHE264, and ALA286 residues in the tyrosinase binding pocket, and this likely contributes to its inhibitory effect on tyrosinase. Consistently, Lineweaver-Burk and Cornish-Bowden plots showed that BMN11 is a competitive inhibitor of tyrosinase. We concluded that BMN11 may be a novel tyrosinase inhibitor that could be used in cosmetics.

7.
Anticancer Res ; 36(10): 5063-5070, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27798865

RESUMEN

BACKGROUND/AIM: Inhibition of cyclooxygenase-2 (COX-2) has been investigated in clinical trials. Currently, NS398 and celecoxib are the most commonly used COX-2 inhibitors. The purpose of this study was to identify conditions that would increase the sensitivity of resistant cancer cells to antimitotic drugs. MATERIALS AND METHODS: We tested whether COX-2 inhibitors can sensitize drug-resistant KBV20C cancer cells. We also compared the efficacy of NS398 with that of celecoxib. RESULTS: Both NS398 and celecoxib could sensitize KB and KBV20C cells to a similar extent, suggesting that COX-2 inhibitors could be used for sensitive, as well as resistant, cancer cells. We demonstrated that the NS398 and celecoxib sensitization mechanism is independent of the inhibition of p-glycoprotein (P-gp), suggesting that resistant KBV20C cells are sensitized through targeting of signaling pathways by both drugs. Furthermore, through using microscopic observation, assessment of cleaved poly ADP ribose polymerase (C-PARP) and annexin V staining we determined that both COX-2 inhibitors strongly sensitized resistant KBV20C cells to vinblastine (VIB) or paclitaxel (PAC) treatment. These results suggest that antimitotic drug-resistant cancer cells can be strongly sensitized by co-treatment with COX-2 inhibitors, without P-gp inhibitory activity. CONCLUSION: These findings provide important information regarding the sensitization of drug-resistant cells and indicate that COX-2 inhibitors may be used for potentially resistant cancer patients, without the toxic effects of P-gp inhibition.


Asunto(s)
Antimitóticos/farmacología , Celecoxib/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Nitrobencenos/farmacología , Sulfonamidas/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Paclitaxel/farmacología , Vinblastina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...