Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1420100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104628

RESUMEN

In recent decades, there has been ongoing development in the application of computer vision (CV) in the medical field. As conventional contact-based physiological measurement techniques often restrict a patient's mobility in the clinical environment, the ability to achieve continuous, comfortable and convenient monitoring is thus a topic of interest to researchers. One type of CV application is remote imaging photoplethysmography (rPPG), which can predict vital signs using a video or image. While contactless physiological measurement techniques have an excellent application prospect, the lack of uniformity or standardization of contactless vital monitoring methods limits their application in remote healthcare/telehealth settings. Several methods have been developed to improve this limitation and solve the heterogeneity of video signals caused by movement, lighting, and equipment. The fundamental algorithms include traditional algorithms with optimization and developing deep learning (DL) algorithms. This article aims to provide an in-depth review of current Artificial Intelligence (AI) methods using CV and DL in contactless physiological measurement and a comprehensive summary of the latest development of contactless measurement techniques for skin perfusion, respiratory rate, blood oxygen saturation, heart rate, heart rate variability, and blood pressure.

2.
Heliyon ; 10(7): e28731, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38596104

RESUMEN

Magnetic resonance imaging (MRI) is an indispensable medical imaging examination technique in musculoskeletal medicine. Modern MRI techniques achieve superior high-quality multiplanar imaging of soft tissue and skeletal pathologies without the harmful effects of ionizing radiation. Some current limitations of MRI include long acquisition times, artifacts, and noise. In addition, it is often challenging to distinguish abutting or closely applied soft tissue structures with similar signal characteristics. In the past decade, Artificial Intelligence (AI) has been widely employed in musculoskeletal MRI to help reduce the image acquisition time and improve image quality. Apart from being able to reduce medical costs, AI can assist clinicians in diagnosing diseases more accurately. This will effectively help formulate appropriate treatment plans and ultimately improve patient care. This review article intends to summarize AI's current research and application in musculoskeletal MRI, particularly the advancement of DL in identifying the structure and lesions of upper extremity joints in MRI images.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...