Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-29530849

RESUMEN

Artemisinin (ART) resistance has spread through Southeast Asia, posing a serious threat to the control and elimination of malaria. ART resistance has been associated with mutations in the Plasmodium falciparum kelch-13 (Pfk13) propeller domain. Phenotypically, ART resistance is defined as delayed parasite clearance in patients due to the reduced susceptibility of early ring-stage parasites to the active metabolite of ART dihydroartemisinin (DHA). Early rings can enter a state of quiescence upon DHA exposure and resume growth in its absence. These quiescent rings are referred to as dormant rings or DHA-pretreated rings (here called dormant rings). The imidazolopiperazines (IPZ) are a novel class of antimalarial drugs that have demonstrated efficacy in early clinical trials. Here, we characterized the stage of action of the IPZ GNF179 and evaluated its activity against rings and dormant rings in wild-type and ART-resistant parasites. Unlike DHA, GNF179 does not induce dormancy. We show that GNF179 is more rapidly cidal against schizonts than against ring and trophozoite stages. However, with 12 h of exposure, the compound effectively kills rings and dormant rings of both susceptible and ART-resistant parasites within 72 h. We further demonstrate that in combination with ART, GNF179 effectively prevents recrudescence of dormant rings, including those bearing pfk13 propeller mutations.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Imidazoles/farmacología , Piperazinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Esquizontes/efectos de los fármacos , Esquizontes/metabolismo , Trofozoítos/efectos de los fármacos , Trofozoítos/metabolismo
2.
Nat Microbiol ; 1: 16166, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27642791

RESUMEN

A molecular understanding of drug resistance mechanisms enables surveillance of the effectiveness of new antimicrobial therapies during development and deployment in the field. We used conventional drug resistance selection as well as a regime of limiting dilution at early stages of drug treatment to probe two antimalarial imidazolopiperazines, KAF156 and GNF179. The latter approach permits the isolation of low-fitness mutants that might otherwise be out-competed during selection. Whole-genome sequencing of 24 independently derived resistant Plasmodium falciparum clones revealed four parasites with mutations in the known cyclic amine resistance locus (pfcarl) and a further 20 with mutations in two previously unreported P. falciparum drug resistance genes, an acetyl-CoA transporter (pfact) and a UDP-galactose transporter (pfugt). Mutations were validated both in vitro by CRISPR editing in P. falciparum and in vivo by evolution of resistant Plasmodium berghei mutants. Both PfACT and PfUGT were localized to the endoplasmic reticulum by fluorescence microscopy. As mutations in pfact and pfugt conveyed resistance against additional unrelated chemical scaffolds, these genes are probably involved in broad mechanisms of antimalarial drug resistance.

3.
mBio ; 7(4)2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27381290

RESUMEN

UNLABELLED: Mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) are associated with parasite resistance to the imidazolopiperazines, a potent class of novel antimalarial compounds that display both prophylactic and transmission-blocking activity, in addition to activity against blood-stage parasites. Here, we show that pfcarl encodes a protein, with a predicted molecular weight of 153 kDa, that localizes to the cis-Golgi apparatus of the parasite in both asexual and sexual blood stages. Utilizing clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene introduction of 5 variants (L830V, S1076N/I, V1103L, and I1139K), we demonstrate that mutations in pfcarl are sufficient to generate resistance against the imidazolopiperazines in both asexual and sexual blood-stage parasites. We further determined that the mutant PfCARL protein confers resistance to several structurally unrelated compounds. These data suggest that PfCARL modulates the levels of small-molecule inhibitors that affect Golgi-related processes, such as protein sorting or membrane trafficking, and is therefore an important mechanism of resistance in malaria parasites. IMPORTANCE: Several previous in vitro evolution studies have implicated the Plasmodium falciparum cyclic amine resistance locus (PfCARL) as a potential target of imidazolopiperazines, potent antimalarial compounds with broad activity against different parasite life cycle stages. Given that the imidazolopiperazines are currently being tested in clinical trials, understanding their mechanism of resistance and the cellular processes involved will allow more effective clinical usage.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Múltiples Medicamentos , Sitios Genéticos , Mutación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Recombinación Genética
4.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(22): 2155-61, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21703945

RESUMEN

A novel, rapid and specific liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the simultaneous quantification of gefitinib and its predominant metabolite, O-desmethyl gefitinib in human plasma. Chromatographic separation of analytes was achieved on an Alltima C18 analytical HPLC column (150 mm × 2.1 mm, 5 µm) using an isocratic elution mode with a mobile phase comprised acetonitrile and 0.1% formic acid in water (30:70, v/v). The flow rate was 300 µL/min. The chromatographic run time was 3 min. The column effluents were detected by API 4000 triple quadrupole mass spectrometer using electrospray ionization (ESI) in positive mode. Linearity was demonstrated in the range of 5-1000 ng/mL for gefitinib and 5-500 ng/mL for O-desmethyl gefitinib. The intra- and inter-day precisions for gefitinib and O-desmethyl gefitinib were ≤10.8% and the accuracies ranged from 89.7 to 104.7% for gefitinib and 100.4 to 106.0% for O-desmethyl gefitinib. This method was used as a bioanalytical tool in a phase I clinical trial to investigate the possible effect of hydroxychloroquine on the pharmacokinetics of gefitinib. The results of this study enabled clinicians to ascertain the safety of the combination therapy of hydroxychloroquine and gefitinib in patients with advanced (Stage IIIB-IV) non-small cell lung cancer (NSCLC).


Asunto(s)
Antineoplásicos/sangre , Cromatografía Liquida/métodos , Quinazolinas/sangre , Espectrometría de Masas en Tándem/métodos , Antineoplásicos/química , Antineoplásicos/farmacocinética , Estabilidad de Medicamentos , Gefitinib , Humanos , Análisis de los Mínimos Cuadrados , Quinazolinas/metabolismo , Quinazolinas/farmacocinética , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...