Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
IEEE J Transl Eng Health Med ; 7: 1500110, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31065465

RESUMEN

Chemical fixation is the slowest and often the most uncontrolled step in the multi-step process of preparing tissue for histopathology. In order to reduce the time from taking a core needle biopsy to making a diagnosis, a new approach is proposed that optically monitors the common formalin fixation process. A low-cost and highly-sensitive laser speckle imaging technique is developed to measure shear wave velocity in a biospecimen as small as 0.5 mm in thickness submerged in millifluidic channels. Shear wave velocity, which is the indicator of tissue mechanical property and induced by piezoelectric-actuation, was monitored using gelatin phantom and chicken breast during fixation, as well as post-fixed liver and colon tissues from human. Fixation levels in terms of shear wave velocity increased by approximately 271.0% and 130.8% in gelatin phantom and chicken breast, respectively, before reaching the plateaus at 10.91 m/s and 7.88 m/s. Within these small specimens, the plateaus levels and times varied with location of measurement, and between gelatin and chicken breast. This optical-based approach demonstrates the feasibility of fine-tuning preanalytical variables, such as fixation time, for a rapid and accurate histopathological evaluation; provides a quality metric during the tissue preparation protocol performed in most pathology labs; and introduces the millifluidic chamber that can be engineered to be a future disposable device that automates biopsy processing and imaging.

2.
Health Innov Point Care Conf ; 2014: 271-275, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26110186

RESUMEN

In this study, our collaborative research group explored the possibility of incorporating ultrasound elastography technology with a microfluidic device that is designed to prepare fine needle core biopsies (CBs; L=0.5-2.0 cm, D=0.4-1.2 mm) for pancreatic cancer diagnosis. For the first time, elastographic techniques were employed to measure shear wave velocity in fresh (3.7 m/s) and formalin-fixed (14.7 m/s) pancreatic CBs. Shear wave velocity did not vary whether fixed specimens were free on a microscope slide, or constrained within glass microfluidic channels: 11.5±1.9 v. 11.8±2.1 m/s. 4% agarose inclusions were also embedded within 1% agarose hydrogels to simulate cysts, neoplastic, or necrotic tissue within CBs. Inclusions were successfully visualized and measured using optical coherence elastography. These preliminary experiments demonstrate in a rudimentary fashion that elastographic measurements of pancreatic CBs may be incorporated with our microfluidic device. The rapid mapping of CB stiffness may provide qualitative spatial information for pathologists to determine a more accurate diagnosis for patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...