RESUMEN
Drought is a major environmental stress factor that negatively affects rice growth and yield. From a forward genetic perspective, we selected a drought-insensitive TILLING line (ditl4) from a gamma-ray-induced core mutant population (M10). Under drought conditions, ditl4 exhibited greater fresh weight, survival rate, chlorophyll, proline, and soluble sugar contents, and lower H2O2 and MDA levels than wild-type (WT). In addition, the activities of antioxidant enzymes, such as superoxide dismutase, catalase, and peroxidase, were higher in ditl4 than in the WT. In the relative water loss assay, dilt4 showed significantly decreased leaf curling and water loss compared to WT. Also, the ratio of "closed" stomata aperture was increased in ditl4 under drought stress, suggesting reduced transpiration to prevent water loss. The ditl4 mutant showed decreased stomatal conductance, transpiration, and CO2 assimilation and increased water use efficiency due to the low density of stomata. Whole-genome resequencing analysis of dilt4 identified a single nucleotide polymorphism (SNP) in OsDIRH2 (LOC_Os11g39640), annotated as a RING-H2 type E3 ligase, resulting in a premature stop codon. CRISPR/Cas9-mediated knock-out mutants (OsDIRH2a and OsDIRH2b) enhanced drought tolerance by lowering stomatal density compared to empty vector control plants. These findings suggested that ditl4 with low stomatal density would be useful as a genetic resource for a drought-tolerant breeding program to improve water-use efficiency.
Asunto(s)
Sequías , Mutación , Oryza , Proteínas de Plantas , Estomas de Plantas , Ubiquitina-Proteína Ligasas , Oryza/genética , Oryza/fisiología , Oryza/enzimología , Estomas de Plantas/fisiología , Estomas de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Agua/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Clorofila/metabolismo , Resistencia a la SequíaRESUMEN
Kiwiberry (Actinidia arguta) is a perennial fruit tree belonging to the family Actinidiaceae. Kiwiberries are known to have an extremely high concentration of sugars, phenolics, flavonoids, and vitamin C, and possess delicious taste and health-promoting properties. Numerous studies have focused on kiwiberry fruits, demonstrating that they possess a higher phytochemical content and greater antioxidant activities than other berry fruits. The purpose of this study was to compare the phytochemical content and antioxidant potential of leaf, stem, root, and fruit extracts from twelve kiwiberry cultivars grown in Wonju, Korea, characterized by a Dwa climate (Köppen climate classification). In most kiwiberry cultivars, the total phenolic (TPC) and total flavonoid (TFC) phytochemical content was significantly higher in leaf and stem tissues, while the roots exhibited higher antioxidant activity. In fruit tissues, the TPC and TFC were higher in unripe and ripe kiwiberry fruits, respectively, and antioxidant activity was generally higher in unripe than ripe fruit across most of the cultivars. Based on our results, among the 12 kiwiberry cultivars, cv. Daebo and cv. Saehan have a significantly higher phytochemical content and antioxidant activity in all of the tissue types, thus having potential as a functional food and natural antioxidant.
Asunto(s)
Actinidia , Antioxidantes , Antioxidantes/química , Extractos Vegetales/química , Ácido Ascórbico/análisis , Fenoles/análisis , Frutas/química , Flavonoides/análisis , Fitoquímicos/químicaRESUMEN
Vascular wall aging has been strongly associated with cardiovascular diseases. Thus, this study aimed to investigate the efficacy of USCP-GVH-014, a mixed extract of Salvia miltiorrhiza Bunge and Paeonia lactiflora Pall., in inhibiting vascular wall aging through in vitro and in vivo experiments. The results revealed that USCP-GVH-014 inhibited abnormal cell proliferation, collagen overproduction, and MMP-2 and MMP-9 overexpression caused by various stimuli and recovered the antioxidant enzyme superoxide dismutase on human aortic smooth muscle cells. In addition, it inhibited the increase in ICAM-1 and VCAM-1 expression induced by tumor necrosis factor alpha on human aortic endothelial cells and prevented the aging of the vascular wall by regulating related proteins such as epidermal growth factor and interleukin-1ß. Furthermore, it reduced vascular aging in in vivo studies. These results demonstrate that USCP-GVH-014 effectively reduces vascular aging, thereby rendering it a potential therapeutic candidate for cardiovascular diseases.
Asunto(s)
Enfermedades Cardiovasculares , Paeonia , Salvia miltiorrhiza , Humanos , Células Endoteliales , EnvejecimientoRESUMEN
Soil salinity has a negative effect on crop yield. Therefore, plants have evolved many strategies to overcome decreases in yield under saline conditions. Among these, E3-ubiquitin ligase regulates salt tolerance. We characterized Oryza sativa Really Interesting New Gene (RING) Finger C3HC4-type E3 ligase (OsRFPHC-4), which plays a positive role in improving salt tolerance. The expression of OsRFPHC-4 was downregulated by high NaCl concentrations and induced by abscisic acid (ABA) treatment. GFP-fused OsRFPHC-4 was localized to the plasma membrane of rice protoplasts. OsRFPHC-4 encodes a cellular protein with a C3HC4-RING domain with E3 ligase activity. However, its variant OsRFPHC-4C161A does not possess this activity. OsRFPHC-4-overexpressing plants showed enhanced salt tolerance due to low accumulation of Na+ in both roots and leaves, low Na+ transport in the xylem sap, high accumulation of proline and soluble sugars, high activity of reactive oxygen species (ROS) scavenging enzymes, and differential regulation of Na+ /K+ transporter expression compared to wild-type (WT) and osrfphc-4 plants. In addition, OsRFPHC-4-overexpressing plants showed higher ABA sensitivity under exogenous ABA treatment than WT and osrfphc-4 plants. Overall, these results suggest that OsRFPHC-4 contributes to the improvement of salt tolerance and Na+ /K+ homeostasis via the regulation of changes in Na+ /K+ transporters.
Asunto(s)
Oryza , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Tolerancia a la Sal/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Homeostasis , Ubiquitinas/genética , Ubiquitinas/metabolismo , Ubiquitinas/farmacología , Regulación de la Expresión Génica de las Plantas , SalinidadRESUMEN
Brassica oleracea var. italica (broccoli), a member of the cabbage family, is abundant with many nutrients, including vitamins, potassium, fiber, minerals, and phytochemicals. Consequently, it has been used as a functional food additive to reduce oxidative stress and inflammatory responses. In the current study, the effects of sulforaphane-rich broccoli sprout extract (BSE) on the inflammatory response were investigated in vitro and in vivo. Comparative high-performance liquid chromatography analysis of sulforaphane content from different extracts revealed that 70% ethanolic BSE contained more sulforaphane than the other extracts. qPCR and enzyme immunoassay analyses revealed that BSE markedly reduced the expression of proinflammatory cytokines and mediators, including cyclooxygenase 2, interleukin (IL)-1ß, IL-6, IL-1, inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α), in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Pretreatment with BSE improved the survival rate and suppressed alanine aminotransferase and aspartate aminotransferase expression in LPS-induced endotoxemic mice, while proinflammatory cytokines such as IL-1ß, TNF-α, IL-6, cyclooxygenase-2, and iNOS decreased dramatically in the LPS-induced liver injury model via BSE treatment. Additionally, F4/80 immunostaining showed that BSE suppressed hepatic macrophage infiltration in the liver after lipopolysaccharide injection. In conclusion, BSE may be a potential nutraceutical for preventing and regulating excessive immune responses in inflammatory disease.
RESUMEN
Tissue succulence in plants involves the storage of water in one or more organs or tissues to assist in maintaining water potentials on daily or seasonal time scales. This drought-avoidance or drought-resistance strategy allows plants to occupy diverse environments including arid regions, regions with rocky soils, epiphytic habitats, and saline soils. Climate-resilient strategies are of increasing interest in the context of the global climate crisis, which is leading to hotter and drier conditions in many regions throughout the globe. Here, we describe a short history of succulent plants, the basic concepts of tissue succulence, the anatomical diversity of succulent morphologies and associated adaptive traits, the evolutionary, phylogenetic, and biogeographical diversity of succulent plants, extinction risks to succulents due to poaching from their natural environments, and the myriad uses and applications of economically important succulent species and the products derived from them. Lastly, we discuss current prospects for engineering tissue succulence to improve salinity and drought tolerance in crops.
RESUMEN
Salinity negatively affects plant growth, productivity, and metabolism. Therefore, plants have evolved diverse strategies to survive in saline environments. To identify such strategies involving the ubiquitin/26S proteasome system, we characterized molecular functions of a rice C4HC3 really interesting new gene (RING)-type E3-ubiquitin ligase gene. Oryza sativa RING finger protein v6 (OsRFPv6) was highly expressed under conditions of abiotic stress, induced by 100 mM NaCl and 20% PEG. The GFP-OsRFPv6 protein was localized in the plasma membrane and cytosol in rice protoplasts. In vitro ubiquitin assay revealed that OsRFPv6 possessed E3-ubiquitin ligase activity, but its variant OsRFPv6C100A did not. OsRFPv6-overexpressing plants were insensitive to salinity, but their growth was delayed under normal conditions. Under saline conditions, transgenic plants exhibited higher proline, soluble sugar, and chlorophyll content and lower H2 O2 accumulation than wild-type plants. Moreover, transgenic plants exhibited lower Na+ uptake, lower Na+ content, and higher K+ content in the xylem sap assay. Under saline conditions, the expression levels of nine Na+ /K+ transporter genes in roots and leaves were significantly different between transgenic and wild-type plants. Specifically, under both normal and saline conditions, the expression of OsHKT2;1, a Na+ transporter, in the roots of transgenic plants was lower than that in the roots of wild-type plants. These results suggest that OsRFPv6 E3-ubiquitin ligase serves as a positive regulator of salinity response via Na+ uptake.
Asunto(s)
Oryza , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés SalinoRESUMEN
KEY MESSAGE: We identified a RING-type E3 ligase (TaBAH1) protein in winter wheat that targets TaSAHH1 for degradation and might be involved in primordia development by regulating targeted protein degradation. Grain yield per spike in wheat (Triticum aestivum), is mainly determined prior to flowering during mature primordia development; however, the genes involved in primordia development have yet to be characterized. In this study, we demonstrated that, after vernalization for 50 days at 4 °C, there was a rapid acceleration in primordia development to the mature stages in the winter wheat cultivars Keumgang and Yeongkwang compared with the Chinese Spring cultivar. Although Yeongkwang flowers later than Keumgang under normal condition, it has the same heading time and reaches the WS9 stage of floral development after vernalization for 50 days. Using RNA sequencing, we identified candidate genes associated with primordia development in cvs. Keumgang and Yeongkwang, that are differentially expressed during wheat reproductive stages. Among these, the RING-type E3 ligase TaBAH1 (TraesCS5B01G373000) was transcriptionally upregulated between the double-ridge (WS2.5) stage and later stages of floret primordia development (WS10) after vernalization. Transient expression analysis indicated that TaBAH1 was localized to the plasma membrane and nucleus and was characterized by self-ubiquitination activity. Furthermore, we found that TaBAH1 interacts with TaSAHH1 to mediate its polyubiquitination and degradation through a 26S proteasomal pathway. Collectively, the findings of this study indicate that TaBAH1 might play a prominent role in post-vernalization floret primordia development.
Asunto(s)
Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Triticum/genética , Ubiquitina-Proteína Ligasas/genética , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Tiempo , Triticum/fisiología , Ubiquitina-Proteína Ligasas/fisiología , UbiquitinaciónRESUMEN
MAIN CONCLUSION: Molecular function ofRING E3 ligase SbHCI1is involved in ABA-mediated basal heat stress tolerancein sorghum. Global warming generally reduces plant survival, owing to the negative effects of high temperatures on plant development. However, little is known about the role of Really Interesting New Gene (RING) E3 ligase in the heat stress responses of plants. As such, the aim of the present study was to characterize the molecular functions of the Sorghum bicolor ortholog of the Oryza sativa gene for Heat- and Cold-Induced RING finger protein 1 (SbHCI1). Subcellular localization revealed that SbHCI1 was mainly associated with the cytosol and that it moved to the Golgi apparatus under heat stress conditions. The fluorescent signals of SbHCI1 substrate proteins were observed to migrate to the cytoplasm under heat stress conditions. Bimolecular fluorescence complementation (BiFC) and yeast two-hybrid (Y2H) assays revealed that SbHCI1 physically interacted with OsHCI1 ortholog partner proteins in the cytoplasm. Moreover, an in vitro ubiquitination assay revealed that SbHCI1 polyubiquitinated each of the three interacting proteins. The ectopic overexpression of SbHCI1 in Arabidopsis revealed that the protein was capable of inducing abscisic acid (ABA)-hypersensitivity and basal heat stress tolerance. Therefore, SbHCI1 possesses E3 ligase activity and may function as a positive regulator of heat stress responses through the modulation of interacting proteins.
Asunto(s)
Ácido Abscísico , Calor , Proteínas de Plantas , Sorghum , Estrés Fisiológico , Ubiquitina-Proteína Ligasas , Ácido Abscísico/farmacología , Arabidopsis/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Sorghum/efectos de los fármacos , Sorghum/enzimología , Sorghum/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Tissue succulence (ratio of tissue water/leaf area or dry mass) or the ability to store water within living tissues is among the most successful adaptations to drought in the plant kingdom. This taxonomically widespread adaptation helps plants avoid the damaging effects of drought, and is often associated with the occupancy of epiphytic, epilithic, semi-arid and arid environments. Tissue succulence was engineered in Arabidopsis thaliana by overexpression of a codon-optimized helix-loop-helix transcription factor (VvCEB1opt ) from wine grape involved in the cell expansion phase of berry development. VvCEB1opt -overexpressing lines displayed significant increases in cell size, succulence and decreased intercellular air space. VvCEB1opt -overexpressing lines showed increased instantaneous and integrated water-use efficiency (WUE) due to reduced stomatal conductance caused by reduced stomatal aperture and density resulting in increased attenuation of water-deficit stress. VvCEB1opt -overexpressing lines also showed increased salinity tolerance due to reduced salinity uptake and dilution of internal Na+ and Cl- as well as other ions. Alterations in transporter activities were further suggested by media and apoplastic acidification, hygromycin B tolerance and changes in relative transcript abundance patterns of various transporters with known functions in salinity tolerance. Engineered tissue succulence might provide an effective strategy for improving WUE, drought avoidance or attenuation, salinity tolerance, and for crassulacean acid metabolism biodesign.
Asunto(s)
Arabidopsis/fisiología , Plantas Tolerantes a la Sal/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Deshidratación , Ingeniería Genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Estomas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Vitis/genética , Agua/metabolismoRESUMEN
Plants are sessile and unable to avoid environmental stresses, such as drought, high temperature, and high salinity, which often limit the overall plant growth. Plants have evolved many complex mechanisms to survive these abiotic stresses via post-translational modifications. Recent evidence suggests that ubiquitination plays a crucial role in regulating abiotic stress responses in plants by regulating their substrate proteins. Here, we reported the molecular function of a RING finger E3 ligase, Oryza sativa Drought, Heat and Salt-induced RING finger protein 1 (OsDHSRP1), involved in regulating plant abiotic stress tolerance via the Ub/26S proteasome system. The OsDHSRP1 gene transcripts were highly expressed under various abiotic stresses such as NaCl, drought, and heat and the phytohormone abscisic acid (ABA). In addition, in vitro ubiquitination assays demonstrated that the OsDHSRP1 protein possesses a RING-H2 type domain that confers ligase functionality. The results of yeast two-hybrid (Y2H), in vitro pull-down, and bimolecular fluorescence complementation assays support that OsDHSRP1 is able to regulate two substrates, O. sativa glyoxalase (OsGLYI-11.2) and O. sativa abiotic stress-induced cysteine proteinase 1 (OsACP1). We further confirmed that these two substrate proteins were ubiquitinated by OsDHSRP1 E3 ligase and caused protein degradation via the Ub/26S proteasome system. The Arabidopsis plants overexpressing OsDHSRP1 exhibited hypersensitivity to drought, heat, and NaCl stress and a decrease in their germination rates and root lengths compared to the control plants because the degradation of the OsGLYI-11.2 protein maintained lower glyoxalase levels, which increased the methylglyoxal amount in transgenic Arabidopsis plants. However, the OsDHSRP1-overexpressing plants showed no significant difference when treated with ABA. Our finding supports the hypothesis that the OsDHSRP1 E3 ligase acts as a negative regulator, and the degradation of its substrate proteins via ubiquitination plays important roles in regulating various abiotic stress responses via an ABA-independent pathway.
Asunto(s)
Calor , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico/fisiología , Privación de Agua , Ácido Abscísico/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Estrés Fisiológico/genéticaRESUMEN
Global demand for food and bioenergy production has increased rapidly, while the area of arable land has been declining for decades due to damage caused by erosion, pollution, sea level rise, urban development, soil salinization, and water scarcity driven by global climate change. In order to overcome this conflict, there is an urgent need to adapt conventional agriculture to water-limited and hotter conditions with plant crop systems that display higher water-use efficiency (WUE). Crassulacean acid metabolism (CAM) species have substantially higher WUE than species performing C3 or C4 photosynthesis. CAM plants are derived from C3 photosynthesis ancestors. However, it is extremely unlikely that the C3 or C4 crop plants would evolve rapidly into CAM photosynthesis without human intervention. Currently, there is growing interest in improving WUE through transferring CAM into C3 crops. However, engineering a major metabolic plant pathway, like CAM, is challenging and requires a comprehensive deep understanding of the enzymatic reactions and regulatory networks in both C3 and CAM photosynthesis, as well as overcoming physiometabolic limitations such as diurnal stomatal regulation. Recent advances in CAM evolutionary genomics research, genome editing, and synthetic biology have increased the likelihood of successful acceleration of C3-to-CAM progression. Here, we first summarize the systems biology-level understanding of the molecular processes in the CAM pathway. Then, we review the principles of CAM engineering in an evolutionary context. Lastly, we discuss the technical approaches to accelerate the C3-to-CAM transition in plants using synthetic biology toolboxes.
RESUMEN
Salinity is a deleterious abiotic stress factor that affects growth, productivity, and physiology of crop plants. Strategies for improving salinity tolerance in plants are critical for crop breeding programmes. Here, we characterized the rice (Oryza sativa) really interesting new gene (RING) H2-type E3 ligase, OsSIRH2-14 (previously named OsRFPH2-14), which plays a positive role in salinity tolerance by regulating salt-related proteins including an HKT-type Na+ transporter (OsHKT2;1). OsSIRH2-14 expression was induced in root and shoot tissues treated with NaCl. The OsSIRH2-14-EYFP fusion protein was predominately expressed in the cytoplasm, Golgi, and plasma membrane of rice protoplasts. In vitro pull-down assays and bimolecular fluorescence complementation assays revealed that OsSIRH2-14 interacts with salt-related proteins, including OsHKT2;1. OsSIRH2-14 E3 ligase regulates OsHKT2;1 via the 26S proteasome system under high NaCl concentrations but not under normal conditions. Compared with wild type plants, OsSIRH2-14-overexpressing rice plants showed significantly enhanced salinity tolerance and reduced Na+ accumulation in the aerial shoot and root tissues. These results suggest that the OsSIRH2-14 RING E3 ligase positively regulates the salinity stress response by modulating the stability of salt-related proteins.
Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Tolerancia a la Sal/genética , Sodio/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte de Catión/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Oryza/efectos de los fármacos , Oryza/enzimología , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estabilidad Proteica , Estrés Salino/genética , Estrés Salino/fisiología , Tolerancia a la Sal/fisiología , Cloruro de Sodio/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos , Ubiquitinación/genética , Regulación hacia ArribaRESUMEN
KEY MESSAGE: OsHIRP1 is an E3 ligase that acts as a positive regulator in the plant response to heat stress, thus providing important information relating to adaptation and regulation under heat stress in plant. Extreme temperature adversely affects plant growth, development, and productivity. Here, we report the molecular functions of Oryza sativa heat-induced RING finger protein 1 (OsHIRP1), which might play an important role in the response to heat. Transcription of the OsHIRP1 was upregulated in response to heat and drought treatment. We found that the OsHIRP1-EYFP fusion protein was localized to the nucleus after heat treatment (45 °C). Two interacting partners, OsARK4 and OsHRK1, were identified via yeast-two-hybrid screening, which were mainly targeted to the nucleus (OsARK4) and cytosol (OsHRK1), and their interactions with OsHIRP1 were confirmed by biomolecular fluorescence complementation (BiFC). An in vitro ubiquitination assay showed that OsHIRP1 E3 ligase directly ubiquitinates its interacting proteins, OsAKR4 and OsHRK1, as substrates. Using an in vitro cell-free degradation assay, we observed a clear reduction in the levels of the two proteins under high temperature (45 °C), but not under low temperature conditions (4 °C and 30 °C). Seeds of OsHIRP1-overexpressing plants exhibited high germination rates compared with the control under heat stress. The OsHIRP1-overexpressing plants presented high survival rates of approximately 62-68%, whereas control plants displayed a low recovery rate of 34% under condition of acquired thermo-tolerance. Some heat stress-inducible genes (HsfA3, HSP17.3, HSP18.2 and HSP20) were up-regulated in OsHIRP1-overexpressing Arabidopsis than control plants under heat stress conditions. Collectively, these results suggest that OsHIRP1, an E3 ligase, positively regulates plant response to heat stress.
Asunto(s)
Respuesta al Choque Térmico , Calor , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Adaptación Fisiológica , Secuencia de Aminoácidos , Arabidopsis , Frío , Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , UbiquitinaciónRESUMEN
Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that exploits a temporal CO2 pump with nocturnal CO2 uptake and concentration to reduce photorespiration, improve water-use efficiency (WUE), and optimize the adaptability of plants to hotter and drier climates. Introducing the CAM photosynthetic machinery into C3 (or C4) photosynthesis plants (CAM Biodesign) represents a potentially breakthrough strategy for improving WUE while maintaining high productivity. To optimize the success of CAM Biodesign approaches, the functional analysis of individual C4 metabolism cycle genes is necessary to identify the essential genes for robust CAM pathway introduction. Here, we isolated and analyzed the subcellular localizations of 13 enzymes and regulatory proteins of the C4 metabolism cycle of CAM from the common ice plant in stably transformed Arabidopsis thaliana. Six components of the carboxylation module were analyzed including beta-carbonic anhydrase (McBCA2), phosphoenolpyruvate carboxylase (McPEPC1), phosphoenolpyruvate carboxylase kinase (McPPCK1), NAD-dependent malate dehydrogenase (McNAD-MDH1, McNAD-MDH2), and NADP-dependent malate dehydrogenase (McNADP-MDH1). In addition, seven components of the decarboxylation module were analyzed including NAD-dependent malic enzyme (McNAD-ME1, McNAD-ME2), NADP-dependent malic enzyme (McNADP-ME1, NADP-ME2), pyruvate, orthophosphate dikinase (McPPDK), pyruvate, orthophosphate dikinase-regulatory protein (McPPDK-RP), and phosphoenolpyruvate carboxykinase (McPEPCK). Ectopic overexpression of most C4-metabolism cycle components resulted in increased rosette diameter, leaf area, and leaf fresh weight of A. thaliana except for McNADP-MDH1, McPPDK-RP, and McPEPCK. Overexpression of most carboxylation module components resulted in increased stomatal conductance and dawn/dusk titratable acidity (TA) as an indirect measure of organic acid (mainly malate) accumulation in A. thaliana. In contrast, overexpression of the decarboxylating malic enzymes reduced stomatal conductance and TA. This comprehensive study provides fundamental insights into the relative functional contributions of each of the individual components of the core C4-metabolism cycle of CAM and represents a critical first step in laying the foundation for CAM Biodesign.
RESUMEN
Fluorescent protein-based biosensors are providing us with an unprecedented, quantitative view of the dynamic nature of the cellular networks that lie at the heart of plant biology. Such bioreporters can visualize the spatial and temporal kinetics of cellular regulators such as Ca2+ and H+, plant hormones and even allow membrane transport activities to be monitored in real time in living plant cells. The fast pace of their development is making these tools increasingly sensitive and easy to use and the rapidly expanding biosensor toolkit offers great potential for new insights into a wide range of plant regulatory processes. We suggest a checklist of controls that should help avoid some of the more cryptic issues with using these bioreporter technologies.
Asunto(s)
Técnicas Biosensibles/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas de Plantas/genética , Plantas/genética , Calcio/análisis , Calcio/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes/genéticaRESUMEN
Strategies for improving plant size are critical targets for plant biotechnology to increase vegetative biomass or reproductive yield. To improve biomass production, a codon-optimized helix-loop-helix transcription factor (VvCEB1opt ) from wine grape was overexpressed in Arabidopsis thaliana resulting in significantly increased leaf number, leaf and rosette area, fresh weight and dry weight. Cell size, but typically not cell number, was increased in all tissues resulting in increased vegetative biomass and reproductive organ size, number and seed yield. Ionomic analysis of leaves revealed the VvCEB1opt -overexpressing plants had significantly elevated, K, S and Mo contents relative to control lines. Increased K content likely drives increased osmotic potential within cells leading to greater cellular growth and expansion. To understand the mechanistic basis of VvCEB1opt action, one transgenic line was genotyped using RNA-Seq mRNA expression profiling and revealed a novel transcriptional reprogramming network with significant changes in mRNA abundance for genes with functions in delayed flowering, pathogen-defence responses, iron homeostasis, vesicle-mediated cell wall formation and auxin-mediated signalling and responses. Direct testing of VvCEB1opt -overexpressing plants showed that they had significantly elevated auxin content and a significantly increased number of lateral leaf primordia within meristems relative to controls, confirming that cell expansion and organ number proliferation were likely an auxin-mediated process. VvCEB1opt overexpression in Nicotiana sylvestris also showed larger cells, organ size and biomass demonstrating the potential applicability of this innovative strategy for improving plant biomass and reproductive yield in crops.
RESUMEN
Already a proven mechanism for drought resilience, crassulacean acid metabolism (CAM) is a specialized type of photosynthesis that maximizes water-use efficiency by means of an inverse (compared to C3 and C4 photosynthesis) day/night pattern of stomatal closure/opening to shift CO2 uptake to the night, when evapotranspiration rates are low. A systems-level understanding of temporal molecular and metabolic controls is needed to define the cellular behaviour underpinning CAM. Here, we report high-resolution temporal behaviours of transcript, protein and metabolite abundances across a CAM diel cycle and, where applicable, compare the observations to the well-established C3 model plant Arabidopsis. A mechanistic finding that emerged is that CAM operates with a diel redox poise that is shifted relative to that in Arabidopsis. Moreover, we identify widespread rescheduled expression of genes associated with signal transduction mechanisms that regulate stomatal opening/closing. Controlled production and degradation of transcripts and proteins represents a timing mechanism by which to regulate cellular function, yet knowledge of how this molecular timekeeping regulates CAM is unknown. Here, we provide new insights into complex post-transcriptional and -translational hierarchies that govern CAM in Agave. These data sets provide a resource to inform efforts to engineer more efficient CAM traits into economically valuable C3 crops.
Asunto(s)
Agave/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Ritmo Circadiano , Oscuridad , Luz , Proteínas de Plantas/metabolismoRESUMEN
Ubiquitination-mediated protein degradation via Really Interesting New Gene (RING) E3 ligase plays an important role in plant responses to abiotic stress conditions. Many plant studies have found that RING proteins regulate the perception of various abiotic stresses and signal transduction. In this study, Oryza sativa salt-induced RING Finger Protein 1 (OsSIRP1) gene was selected randomly from 44 Oryza sativa RING Finger Proteins (OsRFPs) genes highly expressed in rice roots exposed to salinity stress. Transcript levels of OsSIRP1 in rice leaves after various stress treatments, including salt, heat, drought and hormone abscisic acid (ABA), were observed. Poly-ubiquitinated products of OsSIRP1 were investigated via an in vitro ubiquitination assay.35S:OsSIRP1-EYFP was distributed in the cytosol of untreated and salt-treated rice protoplasts. Heterogeneous overexpression of OsSIRP1 in Arabidopsis reduced tolerance for salinity stress during seed germination and root growth. Our findings indicate that OsSIRP1 acts as a negative regulator of salinity stress tolerance mediated by the ubiquitin 26S proteasome system.
Asunto(s)
Genoma de Planta/genética , Oryza/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Cloruro de Sodio/farmacología , Ácido Abscísico/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiología , Sequías , Regulación de la Expresión Génica de las Plantas , Oryza/citología , Oryza/genética , Filogenia , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Mensajero/genética , Salinidad , Alineación de Secuencia , Estrés Fisiológico , UbiquitinaciónRESUMEN
Although a number of RING E3 ligases in plants have been demonstrated to play key roles in a wide range of abiotic stresses, relatively few studies have detailed how RING E3 ligases exert their cellular actions. We describe Oryza sativa RING finger protein with microtubule-targeting domain 1 (OsRMT1), a functional RING E3 ligase that is likely involved in a salt tolerance mechanism. Functional characterization revealed that OsRMT1 undergoes homodimer formation and subsequently autoubiquitination-mediated protein degradation under normal conditions. By contrast, OsRMT1 is predominantly found in the nucleus and microtubules and its degradation is inhibited under salt stress. Domain dissection of OsRMT1 indicates that the N-terminal domain is required for microtubule targeting. Bimolecular fluorescence complementation analysis and degradation assay revealed that OsRMT1-interacted proteins localized in various organelles were degraded via the ubiquitin (Ub)/26S proteasome-dependent pathway. Interestingly, when OsRMT1 and its target proteins were co-expressed in N. benthamiana leaves, the protein-protein interactions appeared to take place mainly in the microtubules. Overexpression of OsRMT1 in Arabidopsis resulted in increased tolerance to salt stress. Our findings suggest that the abundance of microtubule-associated OsRMT1 is strictly regulated, and OsRMT1 may play a relevant role in salt stress response by modulating levels of its target proteins.