Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Hepatol Commun ; 8(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39167427

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a deadly cancer with a high global mortality rate, and the downregulation of GATA binding protein 4 (GATA4) has been implicated in HCC progression. In this study, we investigated the role of GATA4 in shaping the immune landscape of HCC. METHODS: HCC tumor samples were classified into "low" or "normal/high" based on GATA4 RNA expression relative to adjacent non-tumor liver tissues. The immune landscapes of GATA4-low and GATA4-normal/high tumors were analyzed using cytometry by time-of-flight, bulk/spatial transcriptomic analyses and validated by multiplex immunofluorescence. RESULTS: GATA4-low tumors displayed enrichment in exhausted programmed cell death protein 1+ T cells, immunosuppressive regulatory T cells, myeloid-derived suppressor cells, and macrophages, highlighting the impact of GATA4 downregulation on immunosuppression. Spatial and bulk transcriptomic analyses revealed a negative correlation between GATA4 and C-C Motif Chemokine Ligand 20 (CCL20) expression in HCC. Overexpressing GATA4 confirmed CCL20 as a downstream target, contributing to an immunosuppressive tumor microenvironment, as evidenced by increased regulatory T cells and myeloid-derived suppressor cells in CCL20-high tumors. Lastly, the reduced expression of GATA4 and higher expression of CCL20 were associated with poorer overall survival in patients with HCC, implicating their roles in tumor progression. CONCLUSIONS: Our study reveals that GATA4 downregulation contributes to an immunosuppressive microenvironment, driven by CCL20-mediated enrichment of regulatory T cells and myeloid-derived suppressor cells in HCC. These findings underscore the critical role of GATA4 reduction in promoting immunosuppression and HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Quimiocina CCL20 , Regulación hacia Abajo , Factor de Transcripción GATA4 , Neoplasias Hepáticas , Microambiente Tumoral , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Humanos , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Factor de Transcripción GATA4/genética , Quimiocina CCL20/genética , Microambiente Tumoral/inmunología , Regulación Neoplásica de la Expresión Génica , Tolerancia Inmunológica , Células Supresoras de Origen Mieloide/inmunología , Masculino , Linfocitos T Reguladores/inmunología
2.
Front Immunol ; 15: 1404640, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39007128

RESUMEN

Introduction: Deep learning (DL) models predicting biomarker expression in images of hematoxylin and eosin (H&E)-stained tissues can improve access to multi-marker immunophenotyping, crucial for therapeutic monitoring, biomarker discovery, and personalized treatment development. Conventionally, these models are trained on ground truth cell labels derived from IHC-stained tissue sections adjacent to H&E-stained ones, which might be less accurate than labels from the same section. Although many such DL models have been developed, the impact of ground truth cell label derivation methods on their performance has not been studied. Methodology: In this study, we assess the impact of cell label derivation on H&E model performance, with CD3+ T-cells in lung cancer tissues as a proof-of-concept. We compare two Pix2Pix generative adversarial network (P2P-GAN)-based virtual staining models: one trained with cell labels obtained from the same tissue section as the H&E-stained section (the 'same-section' model) and one trained on cell labels from an adjacent tissue section (the 'serial-section' model). Results: We show that the same-section model exhibited significantly improved prediction performance compared to the 'serial-section' model. Furthermore, the same-section model outperformed the serial-section model in stratifying lung cancer patients within a public lung cancer cohort based on survival outcomes, demonstrating its potential clinical utility. Discussion: Collectively, our findings suggest that employing ground truth cell labels obtained through the same-section approach boosts immunophenotyping DL solutions.


Asunto(s)
Aprendizaje Profundo , Inmunofenotipificación , Neoplasias Pulmonares , Coloración y Etiquetado , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Coloración y Etiquetado/métodos , Biomarcadores de Tumor/metabolismo , Masculino , Linfocitos T/inmunología , Femenino
3.
Sci Rep ; 14(1): 17522, 2024 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080370

RESUMEN

Peritoneal metastasis (PM), the regional progression of intra-abdominal malignancies, is a common sequelae of colorectal cancer (CRC). Immunotherapy is slated to be effective in generating long-lasting anti-tumour response as it utilizes the specificity and memory of the immune system. In the tumour microenvironment, tumour associated macrophages (TAMs) are posited to create an anti-inflammatory pro-tumorigenic environment. In this paper, we aimed to identify immunomodulatory factors associated with colorectal PM (CPM). A publicly available colorectal single cell database (GSE183916) was analysed to identify possible immunological markers that are associated with the activation of macrophages in cancers. Immunohistochemical analysis for V-set and immunoglobin containing domain 4 (VSIG4) expression was performed on tumour microarrays (TMAs) of tumours of colorectal origin (n = 211). Expression of VSIG4 in cell-free ascites obtained from CPM patients (n = 39) was determined using enzyme-linked immunosorbent assay (ELISA). CD163-positive TAMs cluster expression was extracted from a publicly available single cell database and evaluated for the top 100 genes. From these macrophage-expressed genes, VSIG4, a membrane protein produced by the M2 macrophages, mediates the up-regulation of anti-inflammatory and down-regulation of pro-inflammatory macrophages, contributing to an overall anti-inflammatory state. CRC TMA IHC staining showed that low expression of VSIG4 in stromal tissues of primary CRC are associated with poor prognosis (p = 0.0226). CPM ascites also contained varying concentrations of VSIG4, which points to a possible role of VSIG4 in the ascites. The contribution of VSIG4 to CPM development can be further evaluated for its potential as an immunotherapeutic agent.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Peritoneales , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/inmunología , Regulación Neoplásica de la Expresión Génica , Inmunomodulación , Comunicación Paracrina , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/metabolismo , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología
4.
Front Oncol ; 14: 1272432, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38939336

RESUMEN

Introduction: Field cancerization is suggested to arise from imbalanced differentiation in individual basal progenitor cells leading to clonal expansion of mutant cells that eventually replace the epithelium, although without evidence. Methods: We performed deep sequencing analyses to characterize the genomic and transcriptomic landscapes of field change in two patients with synchronous aerodigestive tract tumors. Results: Our data support the emergence of numerous genetic alterations in cancer-associated genes but refutes the hypothesis that founder mutation(s) underpin this phenomenon. Mutational signature analysis identified defective homologous recombination as a common underlying mutational process unique to synchronous tumors. Discussion: Our analyses suggest a common etiologic factor defined by mutational signatures and/or transcriptomic convergence, which could provide a therapeutic opportunity.

5.
Transl Oncol ; 46: 102008, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852279

RESUMEN

Osteosarcoma is the commonest malignant bone tumor of children and adolescents and is characterized by a high risk of recurrence despite multimodal therapy, especially in metastatic disease. This suggests the presence of clinically undetected cancer cells that persist, leading to cancer recurrence. We sought to evaluate the utility of peripheral blood exosomes as a more sensitive yet minimally invasive blood test that could aid in evaluating treatment response and surveillance for potential disease recurrence. We extracted exosomes from the blood of pediatric osteosarcoma patients at diagnosis (n=7) and after neoadjuvant chemotherapy (n=5 subset), as well as from age-matched cancer-free controls (n=3). We also obtained matched tumor biopsy samples (n=7) from the cases. Exosome isolation was verified by CD9 immunoblot and characterized on electron microscopy. Profiles of 780 cancer-related transcripts were analysed in mRNA from exosomes of osteosarcoma patients at diagnosis and control patients, matched post-chemotherapy samples, and matched primary tumor samples. Peripheral blood exosomes of osteosarcoma patients at diagnosis were significantly smaller than those of controls and overexpressed extracellular matrix protein gene THBS1 and B cell markers MS4A1 and TCL1A. Immunohistochemical staining of corresponding tumor samples verified the expression of THBS1 on tumor cells and osteoid matrix, and its persistence in a treatment-refractory patient, as well as the B cell origin of the latter. These hold potential as liquid biopsy biomarkers of disease burden and host immune response in osteosarcoma. Our findings suggest that exosomes may provide novel and clinically-important insights into the pathophysiology of cancers such as osteosarcoma.

6.
JCO Precis Oncol ; 8: e2300694, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38905583

RESUMEN

PURPOSE: Androgen receptor splice variant 7 (ARV-7) is a resistance mechanism to hormonal therapy in metastatic castrate-resistant prostate cancer (mCRPC). It has been associated with poor outcomes. On progression to castrate resistance, ARV-7 positivity has been identified in global populations at an incidence of 17.8%-28.8%. Here, we characterize the incidence of ARV-7 positivity in Asian patients with mCRPC in a prospective fashion and evaluate its implications on treatment outcomes. METHODS: Patients with mCRPC from multiple centers in Southeast and East Asia were enrolled in a prospective manner before initiation of androgen receptor signaling inhibitors or docetaxel. ARV-7 status was evaluated at baseline with three commercially available assays: AdnaTest Prostate Cancer platform, Clearbridge method, and IBN method. Clinical outcomes at progression were assessed. The primary end point of this study was prevalence of ARV-7 positivity; secondary end points were incidence of ARV-7 positivity, prostate specific antigen (PSA) response rate, PSA progression-free survival (PFS), and overall survival (OS). RESULTS: A total of 102 patients with a median age of 72 years at enrollment participated. Overall, an incidence of ARV-7 positivity of between 14.3% and 33.7% in Asian patients with mCRPC was demonstrated depending on the assay used. Patients found to have ARV-7 positivity at enrollment had a numerically worse PSA PFS compared with ARV-7 negative patients. CONCLUSION: In this study, the incidence of ARV-7 positivity in Asian patients with mCRPC was shown to be similar to the global population. Patients with ARV-7 positivity appear to have more aggressive disease with numerically worse PSA PFS and OS. Further prospective studies are needed to fully characterize the relationship that ARV-7 positivity has on prognosis of Asian patients with mCRPC.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Anciano , Receptores Androgénicos/genética , Persona de Mediana Edad , Estudios Prospectivos , Anciano de 80 o más Años , Pueblo Asiatico/genética , Metástasis de la Neoplasia , Isoformas de Proteínas
7.
J Hepatol ; 81(4): 667-678, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38782118

RESUMEN

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is a highly fatal cancer characterized by high intra-tumor heterogeneity (ITH). A panoramic understanding of its tumor evolution, in relation to its clinical trajectory, may provide novel prognostic and treatment strategies. METHODS: Through the Asia-Pacific Hepatocellular Carcinoma trials group (NCT03267641), we recruited one of the largest prospective cohorts of patients with HCC, with over 600 whole genome and transcriptome samples from 123 treatment-naïve patients. RESULTS: Using a multi-region sampling approach, we revealed seven convergent genetic evolutionary paths governed by the early driver mutations, late copy number variations and viral integrations, which stratify patient clinical trajectories after surgical resection. Furthermore, such evolutionary paths shaped the molecular profiles, leading to distinct transcriptomic subtypes. Most significantly, although we found the coexistence of multiple transcriptomic subtypes within certain tumors, patient prognosis was best predicted by the most aggressive cell fraction of the tumor, rather than by overall degree of transcriptomic ITH level - a phenomenon we termed the 'bad apple' effect. Finally, we found that characteristics throughout early and late tumor evolution provide significant and complementary prognostic power in predicting patient survival. CONCLUSIONS: Taken together, our study generated a comprehensive landscape of evolutionary history for HCC and provides a rich multi-omics resource for understanding tumor heterogeneity and clinical trajectories. IMPACT AND IMPLICATIONS: This prospective study, utilizing comprehensive multi-sector, multi-omics sequencing and clinical data from surgically resected hepatocellular carcinoma (HCC), reveals critical insights into the role of tumor evolution and intra-tumor heterogeneity (ITH) in determining the prognosis of HCC. These findings are invaluable for oncology researchers and clinicians, as they underscore the influence of distinct evolutionary paths and the 'bad apple' effect, where the most aggressive tumor fraction dictates disease progression. These insights not only enhance prognostic accuracy post-surgical resection but also pave the way for personalized treatment strategies tailored to specific tumor evolutionary and transcriptomic profiles. The coexistence of multiple subtypes within the same tumor prompts a re-appraisal of the utilities of depending on single samples to represent the entire tumor and suggests the need for clinical molecular imaging. This research thus marks a significant step forward in the clinical understanding and management of HCC, underscoring the importance of integrating tumor evolutionary dynamics and multi-omics biomarkers into therapeutic decision-making. CLINICAL TRIAL NUMBER: NCT03267641 (Observational cohort).


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Transcriptoma , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/mortalidad , Variaciones en el Número de Copia de ADN , Evolución Molecular , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/mortalidad , Mutación , Pronóstico , Estudios Prospectivos
9.
Curr Opin Biotechnol ; 87: 103111, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520821

RESUMEN

In-depth profiling of cancer cells/tissues is expanding our understanding of the genomic, epigenomic, transcriptomic, and proteomic landscape of cancer. However, the complexity of the cancer microenvironment, particularly its immune regulation, has made it difficult to exploit the potential of cancer immunotherapy. High-throughput spatial omics technologies and analysis pipelines have emerged as powerful tools for tackling this challenge. As a result, a potential revolution in cancer diagnosis, prognosis, and treatment is on the horizon. In this review, we discuss the technological advances in spatial profiling of cancer around and beyond the central dogma to harness the full benefits of immunotherapy. We also discuss the promise and challenges of spatial data analysis and interpretation and provide an outlook for the future.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/genética , Inmunoterapia/métodos , Genómica/métodos , Microambiente Tumoral , Proteómica/métodos , Análisis de Datos
10.
Pathology ; 56(3): 325-333, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38195375

RESUMEN

The frequency of MET and HER2 amplification being detected by next generation sequencing (NGS) is increasing due to NGS being increasingly adopted for molecular profiling of cancers. However, the accuracy of NGS in detecting these gene amplifications remains uncertain due to conflicting reports in the scientific literature. We studied the accuracy of an amplicon-based large panel NGS assay in detecting MET and HER2 amplification in lung and breast cancers, respectively, by comparing it against conventional testing methods. Amongst 48 lung cancers, four of five cancers that were MET amplified on fluorescence in situ hybridisation (FISH) were classified as amplified on NGS while 42 of the remaining 43 non-amplified cancers were classified as non-amplified on NGS, giving a sensitivity of 80%, specificity of 97.7% and overall concordance of 95.8%. Of the 46 breast cancers tested, only six of the nine cancers that were HER2-positive on immunohistochemistry (IHC)/FISH were HER2-positive on NGS, while all the remaining HER2-negative cases were negative on NGS, giving a sensitivity of 66.7%, specificity of 100% and overall concordance of 93.5%. All the false-negative cases had low level gene amplification (MET:CEP7 or HER2:CEP17 FISH ratio of <3). The low sensitivity for HER2 amplification may be confounded by the small sample size and disproportionate number of cases with low level amplification. In summary, the NGS assay has good concordance with conventional testing methods but may be less sensitive in detecting low level gene amplification.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Amplificación de Genes , Pulmón/metabolismo
12.
Lung Cancer ; 184: 107293, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37683526

RESUMEN

KRAS is the most commonly mutated oncogene in advanced, non-squamous, non-small cell lung cancer (NSCLC) in Western countries. Of the various KRAS mutants, KRAS G12C is the most common variant (~40%), representing 10-13% of advanced non-squamous NSCLC. Recent regulatory approvals of the KRASG12C-selective inhibitors sotorasib and adagrasib for patients with advanced or metastatic NSCLC harboring KRASG12C have transformed KRAS into a druggable target. In this review, we explore the evolving role of KRAS from a prognostic to a predictive biomarker in advanced NSCLC, discussing KRAS G12C biology, real-world prevalence, clinical relevance of co-mutations, and approaches to molecular testing. Real-world evidence demonstrates significant geographic differences in KRAS G12C prevalence (8.9-19.5% in the US, 9.3-18.4% in Europe, 6.9-9.0% in Latin America, and 1.4-4.3% in Asia) in advanced NSCLC. Additionally, the body of clinical data pertaining to KRAS G12C co-mutations such as STK11, KEAP1, and TP53 is increasing. In real-world evidence, KRAS G12C-mutant NSCLC was associated with STK11, KEAP1, and TP53 co-mutations in 10.3-28.0%, 6.3-23.0%, and 17.8-50.0% of patients, respectively. Whilst sotorasib and adagrasib are currently approved for use in the second-line setting and beyond for patients with advanced/metastatic NSCLC, testing and reporting of the KRAS G12C variant should be included in routine biomarker testing prior to first-line therapy. KRAS G12C test results should be clearly documented in patients' health records for actionability at progression. Where available, next-generation sequencing is recommended to facilitate simultaneous testing of potentially actionable biomarkers in a single run to conserve tissue. Results from molecular testing should inform clinical decisions in treating patients with KRAS G12C-mutated advanced NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/epidemiología , Carcinoma de Pulmón de Células no Pequeñas/genética , Proteína 1 Asociada A ECH Tipo Kelch , Proteínas Proto-Oncogénicas p21(ras)/genética , Prevalencia , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/genética , Factor 2 Relacionado con NF-E2 , Mutación/genética
13.
Am J Pathol ; 193(12): 2156-2171, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37673328

RESUMEN

A growing body of evidence suggests de novo lipogenesis as a key metabolic pathway adopted by cancers to fuel tumorigenic processes. While increased de novo lipogenesis has also been reported in hepatocellular carcinoma (HCC), understanding on molecular mechanisms driving de novo lipogenesis remains limited. In the present study, the functional role of sortilin, a member of the vacuolar protein sorting 10 protein receptor family, in HCC was investigated. Sortilin was overexpressed in HCC and was associated with poorer survival outcome. In functional studies, sortilin-overexpressing cells conferred tumorigenic phenotypes, namely, self-renewal and metastatic potential, of HCC cells via the cancer secretome. Proteomic profiling highlighted fatty acid metabolism as a potential molecular pathway associated with sortilin-driven cancer secretome. This finding was validated by the increased lipid content and expression of fatty acid synthase (FASN) in HCC cells treated with conditioned medium collected from sortilin-overexpressing cells. The enhanced tumorigenic properties endowed by sortilin-driven cancer secretome were partly abrogated by co-administration of FASN inhibitor C75. Further mechanistic dissection suggested protein stabilization by post-translational modification with O-GlcNAcylation as a major mechanism leading to augmented FASN expression. In conclusion, the present study uncovered the role of sortilin in hepatocarcinogenesis via modulation of the cancer secretome and deregulated lipid metabolism.


Asunto(s)
Carcinoma Hepatocelular , Lipogénesis , Neoplasias Hepáticas , Humanos , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Secretoma
14.
J Immunother Cancer ; 11(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37586766

RESUMEN

BACKGROUND: Combination therapy with radioembolization (yttrium-90)-resin microspheres) followed by nivolumab has shown a promising response rate of 30.6% in a Phase II trial (CA209-678) for advanced hepatocellular carcinoma (HCC); however, the response mechanisms and relevant biomarkers remain unknown. METHODS: By collecting both pretreatment and on-treatment samples, we performed multimodal profiling of tissue and blood samples and investigated molecular changes associated with favorable responses in 33 patients from the trial. RESULTS: We found that higher tumor mutation burden, NCOR1 mutations and higher expression of interferon gamma pathways occurred more frequently in responders. Meanwhile, non-responders tended to be enriched for a novel Asian-specific transcriptomic subtype (Kaya_P2) with a high frequency of chromosome 16 deletions and upregulated cell cycle pathways. Strikingly, unlike other cancer types, we did not observe any association between T-cell populations and treatment response, but tumors from responders had a higher proportion of CXCL9+/CXCR3+ macrophages. Moreover, biomarkers discovered in previous immunotherapy trials were not predictive in the current cohort, suggesting a distinctive molecular landscape associated with differential responses to the combination therapy. CONCLUSIONS: This study unraveled extensive molecular changes underlying distinctive responses to the novel treatment and pinpointed new directions for harnessing combination therapy in patients with advanced HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Microesferas , Nivolumab/farmacología , Nivolumab/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Deleción Cromosómica
15.
Sci Adv ; 9(24): eadf3120, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37327346

RESUMEN

Human cord blood-derived γδ T cells (CBγδ) display a highly diverse TCRγδ repertoire and have a unique subtype composition different from fetal or adult peripheral blood counterparts. We expanded CBγδ in vitro using an irradiated Epstein-Barr virus-transformed feeder cell-based modified rapid expansion protocol (REP). Single-cell RNA sequencing tracked progressive differentiation of naïve CBγδ into cells expressing neoantigen-reactive tumor-infiltrating lymphocyte as well as tissue-resident memory precursor-like and antigen-presenting cell-like gene signatures. TCRγδ clonal tracing revealed a bias toward cytotoxic effector differentiation in a much larger proportion of Vδ2- clones compared to Vδ2+ clones, resulting in the former being more cytotoxic at the population level. These clonotype-specific differentiation dynamics were not restricted to REP and were recapitulated upon secondary nonviral antigen stimulations. Thus, our data showed intrinsic cellular differences between major subtypes of human γδ T cells already in operation at early postnatal stage and highlighted key areas of consideration in optimizing cell manufacturing processes.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfocitos T , Adulto , Humanos , Sangre Fetal , Herpesvirus Humano 4 , Receptores de Antígenos de Linfocitos T gamma-delta/genética
16.
Front Immunol ; 14: 1182016, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377962

RESUMEN

Introduction: Despite recent advances in immunotherapy for hepatocellular carcinoma (HCC), the overall modest response rate underscores the need for a better understanding of the tumor microenvironment (TME) of HCC. We have previously shown that CD38 is widely expressed on tumor-infiltrating leukocytes (TILs), predominantly on CD3+ T cells and monocytes. However, its specific role in the HCC TME remains unclear. Methods: In this current study, we used cytometry time-of-flight (CyTOF), bulk RNA sequencing on sorted T cells, and single-cell RNA (scRNA) sequencing to interrogate expression of CD38 and its correlation with T cell exhaustion in HCC samples. We also employed multiplex immunohistochemistry (mIHC) for validating our findings. Results: From CyTOF analysis, we compared the immune composition of CD38-expressing leukocytes in TILs, non-tumor tissue-infiltrating leukocytes (NIL), and peripheral blood mononuclear cells (PBMC). We identified CD8+ T cells as the dominant CD38-expressing TILs and found that CD38 expression was significantly higher in CD8+ TRM in TILs than in NILs. Furthermore, through transcriptomic analysis on sorted CD8+ TRM from HCC tumors, we observed a higher expression of CD38 along with T cell exhaustion genes, including PDCD1 and CTLA4, compared to the circulating memory CD8 T cells from PBMC. This was validated by scRNA sequencing that revealed co-expression of CD38 with PDCD1, CTLA4, and ITGAE (CD103) in T cells from HCC tumors. The protein co-expression of CD38 and PD-1 on CD8+ T cells was further demonstrated by mIHC on HCC FFPE tissues, marking CD38 as a T cell co-exhaustion marker in HCC. Lastly, the higher proportions of CD38+PD-1+ CD8+ T cells and CD38+PD-1+ TRM were significantly associated with the higher histopathological grades of HCC, indicating its role in the aggressiveness of the disease. Conclusion: Taken together, the concurrent expression of CD38 with exhaustion markers on CD8+ TRM underpins its role as a key marker of T cell exhaustion and a potential therapeutic target for restoring cytotoxic T cell function in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Linfocitos T CD8-positivos , Leucocitos Mononucleares/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno CTLA-4/metabolismo , Células T de Memoria , Complejo CD3/metabolismo , Microambiente Tumoral
17.
Front Immunol ; 14: 1150985, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342338

RESUMEN

Introduction: Immune checkpoint blockade (ICB) is a systemic therapeutic option for advanced hepatocellular carcinoma (HCC). However, low patient response rates necessitate the development of robust predictive biomarkers that identify individuals who will benefit from ICB. A 4-gene inflammatory signature, comprising CD8, PD-L1, LAG-3, and STAT1, was recently shown to be associated with a better overall response to ICB in various cancer types. Here, we examined whether tissue protein expression of CD8, PD-L1, LAG-3, and STAT1 predicts response to ICB in HCC. Methods: HCC samples from 191 Asian patients, comprising resection specimens from 124 patients (ICB-naïve) and pre-treatment specimens from 67 advanced HCC patients treated with ICB (ICB-treated), were analyzed for CD8, PD-L1, LAG-3, and STAT1 tissue expression using multiplex immunohistochemistry followed by statistical and survival analyses. Results: Immunohistochemical and survival analyses of ICB-naïve samples showed that high LAG-3 expression was associated with shorter median progression-free survival (mPFS) and overall survival (mOS). Analysis of ICB-treated samples revealed that high proportions of LAG-3+ and LAG-3+CD8+ cells pre-treatment were most closely associated with longer mPFS and mOS. Using a log-likelihood model, adding the total LAG-3+ cell proportion to the total CD8+ cell proportion significantly increased the predictive values for mPFS and mOS, compared with the total CD8+ cell proportion alone. Moreover, levels of CD8 and STAT1, but not PD-L1, were significantly correlated with better responses to ICB. After analyzing viral-related and non-viral HCC samples separately, only the LAG3+CD8+ cell proportion was significantly associated with responses to ICB regardless of viral status. Conclusion: Immunohistochemical scoring of pre-treatment levels of LAG-3 and CD8 in the tumor microenvironment may help predict ICB benefits in HCC patients. Furthermore, immunohistochemistry-based techniques offer the advantage of being readily translatable in the clinical setting.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Microambiente Tumoral , Linfocitos T CD8-positivos , Inmunoterapia/métodos
18.
BMC Bioinformatics ; 24(1): 200, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193950

RESUMEN

BACKGROUND: Cysteine-dense peptides (CDPs) are an attractive pharmaceutical scaffold that display extreme biochemical properties, low immunogenicity, and the ability to bind targets with high affinity and selectivity. While many CDPs have potential and confirmed therapeutic uses, synthesis of CDPs is a challenge. Recent advances have made the recombinant expression of CDPs a viable alternative to chemical synthesis. Moreover, identifying CDPs that can be expressed in mammalian cells is crucial in predicting their compatibility with gene therapy and mRNA therapy. Currently, we lack the ability to identify CDPs that will express recombinantly in mammalian cells without labour intensive experimentation. To address this, we developed CysPresso, a novel machine learning model that predicts recombinant expression of CDPs based on primary sequence. RESULTS: We tested various protein representations generated by deep learning algorithms (SeqVec, proteInfer, AlphaFold2) for their suitability in predicting CDP expression and found that AlphaFold2 representations possessed the best predictive features. We then optimized the model by concatenation of AlphaFold2 representations, time series transformation with random convolutional kernels, and dataset partitioning. CONCLUSION: Our novel model, CysPresso, is the first to successfully predict recombinant CDP expression in mammalian cells and is particularly well suited for predicting recombinant expression of knottin peptides. When preprocessing the deep learning protein representation for supervised machine learning, we found that random convolutional kernel transformation preserves more pertinent information relevant for predicting expressibility than embedding averaging. Our study showcases the applicability of deep learning-based protein representations, such as those provided by AlphaFold2, in tasks beyond structure prediction.


Asunto(s)
Cisteína , Aprendizaje Profundo , Animales , Proteínas/química , Péptidos/química , Algoritmos , Mamíferos
19.
JHEP Rep ; 5(6): 100715, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37168287

RESUMEN

Background & Aims: Lifestyle and environmental-related exposures are important risk factors for hepatocellular carcinoma (HCC), suggesting that epigenetic dysregulation significantly underpins HCC. We profiled 30 surgically resected tumours and the matched adjacent normal tissues to understand the aberrant epigenetic events associated with HCC. Methods: We identified tumour differential enhancers and the associated genes by analysing H3K27 acetylation (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) and Hi-C/HiChIP data from the resected tumour samples of 30 patients with early-stage HCC. This epigenome dataset was analysed with previously reported genome and transcriptome data of the overlapping group of patients from the same cohort. We performed patient-specific differential expression testing using multiregion sequencing data to identify genes that undergo both enhancer and gene expression changes. Based on the genes selected, we identified two patient groups and performed a recurrence-free survival analysis. Results: We observed large-scale changes in the enhancer distribution between HCC tumours and the adjacent normal samples. Many of the gain-in-tumour enhancers showed corresponding upregulation of the associated genes and vice versa, but much of the enhancer and gene expression changes were patient-specific. A subset of the upregulated genes was activated in a subgroup of patients' tumours. Recurrence-free survival analysis revealed that the patients with a more robust upregulation of those genes showed a worse prognosis. Conclusions: We report the genomic enhancer signature associated with differential prognosis in HCC. Findings that cohere with oncofoetal reprogramming in HCC were underpinned by genome-wide enhancer rewiring. Our results present the epigenetic changes in HCC that offer the rational selection of epigenetic-driven gene targets for therapeutic intervention or disease prognostication in HCC. Impact and Implications: Lifestyle and environmental-related exposures are the important risk factors of hepatocellular carcinoma (HCC), suggesting that tumour-associated epigenetic dysregulations may significantly underpin HCC. We profiled tumour tissues and their matched normal from 30 patients with early-stage HCC to study the dysregulated epigenetic changes associated with HCC. By also analysing the patients' RNA-seq and clinical data, we found the signature genes - with epigenetic and transcriptomic dysregulation - associated with worse prognosis. Our findings suggest that systemic approaches are needed to consider the surrounding cellular environmental and epigenetic changes in HCC tumours.

20.
Transl Lung Cancer Res ; 12(4): 742-753, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37197627

RESUMEN

Background: Osimertinib is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) approved for use in EGFR-mutant lung cancer. We examined its performance in the second/subsequent line after resistance to first- and second-generation (1/2G) EGFR-TKI. Methods: We reviewed electronic records of 202 patients who received osimertinib from July 2015 to January 2019 in the second/subsequent line after progression on prior EGFR-TKI. Of these, complete data from 193 patients were available. Clinical data including patient characteristics, primary EGFR mutation, T790M mutation status, presence of baseline brain metastases (BM), first-line EGFR-TKI use, and survival outcomes were extracted, and results retrospectively analyzed. Results: Of 193 evaluable patients, 151 (78.2%) were T790M+ (T790M positive) with 96 (49.2%) tissue confirmed; 52% of patients received osimertinib in the second line setting. After median follow up of 37 months, median progression-free survival (PFS) of the entire cohort was 10.3 [95% confidence interval (CI): 8.64-11.50] months and median overall survival (OS) was 20 (95% CI: 15.61-23.13) months. Overall response rate (ORR) to osimertinib was 43% (95% CI: 35.9-50.3%); 48.3% in T790M+ vs. 20% in T790M- (T790M negative) patients. OS in T790M+ patients was 22.6 vs. 7.9 months in T790M- patients (HR 0.43, P=0.001), and PFS was 11.2 vs. 3.1 months respectively (HR 0.52, P=0.01). Tumour T790M+ was significantly associated with longer PFS (P=0.007) and OS (P=0.01) compared to tumour T790M- patients, however this association was not seen with plasma T790M+. Of the 22 patients with paired tumor/plasma T790M testing, response rate (RR) to osimertinib was 30% for those plasma T790M+/tumour T790M-, compared to 63% and 67% for those who were plasma T790M+/tumour T790M+ and plasma T790M-/tumour T790M+, respectively. By multivariable analysis (MVA), Eastern Cooperative Oncology Group (ECOG) performance status ≥2 was associated with shorter OS (HR 2.53, P<0.001) and PFS (HR 2.10, P<0.001), whereas presence of T790M+ was associated with longer OS (HR 0.50, P=0.008) and PFS (HR 0.57, P=0.027). Conclusions: This cohort demonstrated the efficacy of osimertinib in second line/beyond for EGFR+ (EGFR mutation-positive) non-small cell lung cancer (NSCLC). Tissue T790M result appeared more predictive of osimertinib efficacy compared to plasma, highlighting potential T790M heterogeneity and the advantage with paired tumor-plasma T790M testing at TKI resistance. T790M- disease at resistance remains an unmet treatment need.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...