Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 18179, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875586

RESUMEN

Three-dimensional (3D) printing allows the fabrication of complex shapes with high resolutions. However, the printed structures typically have fixed shapes and functions. Four-dimensional printing allows the shapes of 3D-printed structures to be transformed in response to external stimuli. Among the external stimuli, light has unique advantages for remote thermal actuation. However, light absorption in opaque structures occurs only near the sample surface; thus, actuation can be slow. Here, we propose and experimentally demonstrate the rapid and selective actuation of 3D-printed shape-memory polymer (SMP) composites using microwave heating. The SMP composite filaments are prepared using different amounts of graphite flakes. Microwave radiation can penetrate the entire printed structures and induce rapid heating. With sufficient graphite contents, the printed SMP composites are heated above their glass transition temperature within a few seconds. This leads to rapid thermal actuation of the 3D-printed SMP structures. Finally, dual-material 3D printing is demonstrated to induce selective microwave heating and control actuation motion. Our experiments and simulations indicate that microwave heating of SMP composites can be an effective method for the rapid and selective actuation of complex structures.

2.
Sci Adv ; 9(26): eadh0414, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37379382

RESUMEN

Chiral light sources realized in ultracompact device platforms are highly desirable for various applications. Among active media used for thin-film emission devices, lead-halide perovskites have been extensively studied for photoluminescence due to their exceptional properties. However, up to date, there have been no demonstrations of chiral electroluminescence with a substantial degree of circular polarization (DCP) based on perovskite materials, being critical for the development of practical devices. Here, we propose a concept of chiral light sources based on a thin-film perovskite metacavity and experimentally demonstrate chiral electroluminescence with a peak DCP approaching 0.38. We design a metacavity created by a metal and a dielectric metasurface supporting photonic eigenstates with a close-to-maximum chiral response. Chiral cavity modes facilitate asymmetric electroluminescence of pairs of left and right circularly polarized waves propagating in the opposite oblique directions. The proposed ultracompact light sources are especially advantageous for many applications requiring chiral light beams of both helicities.

3.
Nano Lett ; 21(23): 10076-10085, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34843262

RESUMEN

Momentum space topology can be exploited to manipulate radiation in real space. Here we demonstrate topological control of 2D perovskite emission in the strong coupling regime via polaritonic bound states in the continuum (BICs). Topological polarization singularities (polarization vortices and circularly polarized eigenstates) are observed at room temperature by measuring the Stokes parameters of photoluminescence in momentum space. Particularly, in symmetry-broken structures, a very large degree of circular polarization (DCP) of ∼0.835 is achieved in the perovskite emission, which is the largest in perovskite materials to our knowledge. In the strong coupling regime, lower polariton modes shift to the low-loss spectral region, resulting in strong emission enhancement and large DCP. Our reciprocity analysis reveals that DCP is limited by material absorption at the emission wavelength. Polaritonic BICs based on 2D perovskite materials combine unique topological features with exceptional material properties and may become a promising platform for active nanophotonic devices.

4.
Sci Rep ; 11(1): 22817, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819584

RESUMEN

Spoof surface plasmons in corrugated metal surfaces allow tight field confinement and guiding even at low frequencies and are promising for compact microwave photonic devices. Here, we use metal-ink printing on flexible substrates to construct compact spoof plasmon resonators. We clearly observe multipole resonances in the microwave frequencies and demonstrate that they are still maintained even under significant bending. Moreover, by combining two resonators of slightly different sizes, we demonstrate spectral filtering via the Vernier effect. We selectively address a target higher-order resonance while suppressing the other modes. Finally, we investigate the index-sensing capability of printed plasmonic resonators. In the Vernier structure, we can control the resonance amplitude and frequency by adjusting a resonance overlap between two coupled resonators. The transmission amplitude can be maximized at a target refractive index, and this can provide more functionalities and increased design flexibility. The metal-ink printing of microwave photonic structures can be applied to various flexible devices. Therefore, we expect that the compact, flexible plasmonic structures demonstrated in this study may be useful for highly functional elements that can enable tight field confinement and manipulation.

5.
ACS Nano ; 15(8): 13781-13793, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34319691

RESUMEN

Organic-inorganic hybrid perovskites hold great potential for various optoelectronic devices with exceptional properties. Although the direct generation of circularly polarized emission from perovskites would enable various compact devices, achieving a large degree of circular polarization (DCP) at room temperature still remains challenging. Herein, we demonstrate that DCP can be strongly enhanced at the narrow mode position of chiral Fano resonances. In our design, a perovskite film is spin-coated on a symmetry-broken structure with a relatively large feature size. A large DCP of more than 0.5 is achieved at room temperature without the direct patterning of the perovskite layer. Reciprocity calculation reveals that chiral field enhancement enables the emission of opposite helicity to couple into counter-propagating slab modes and leads to a large DCP. Our design is very general and scalable. Our work may lead to circularly polarized light sources based on various perovskite materials.

6.
RSC Adv ; 9(13): 7285-7291, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35519986

RESUMEN

We investigated the role of interfacial water on the atomic-scale tribology of graphite by contact atomic force microscopy. Upon the approach of Au and Pt tips toward graphite in water, the hydration layers on the respective surfaces interact with each other. This results in a discontinuous motion of the metallic tips towards the graphite surface. Snap-in forces measured with Au and Pt tips scale with their respective water adsorption energies. Moreover, we observed significant differences for the atomic-scale friction between the Au and Pt tips and graphite in water. The atomic-scale sliding friction between an Au tip and graphite is characterized by low friction forces (F f < 1 nN in the range of normal force values F n = 1-10 nN) and by a periodic stick-slip that corresponds to the honeycomb structure of graphite. With a Pt tip, the sliding friction on graphite in water is characterized by high friction forces (F f ≈ 5 nN in the range of normal force values F n = 1-10 nN) and by an atomic-scale stick-slip whose characteristic lengths may correspond to an ordered water adsorption layer between platinum and graphite.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA