Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros












Intervalo de año de publicación
1.
Sci Rep ; 14(1): 26060, 2024 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-39472728

RESUMEN

Ruminants have the ability to digest human-inedible plant materials, due to the symbiotic relationship with the rumen microbiota. Rumen microbes supply short chain fatty acids, amino acids, and vitamins to dairy cows that are used for maintenance, growth, and lactation functions. The main goal of this study was to investigate gene-microbiome networks underlying feed efficiency traits by integrating genotypic, microbial, and phenotypic data from lactating dairy cows. Data consisted of dry matter intake (DMI), net energy secreted in milk, and residual feed intake (RFI) records, SNP genotype, and 16S rRNA rumen microbial abundances from 448 mid-lactation Holstein cows. We first assessed marginal associations between genotypes and phenotypic and microbial traits through genomic scans, and then, in regions with multiple significant hits, we assessed gene-microbiome-phenotype networks using causal structural learning algorithms. We found significant regions co-localizing the rumen microbiome and feed efficiency traits. Interestingly, we found three types of network relationships: (1) the cow genome directly affects both rumen microbial abundances and feed efficiency traits; (2) the cow genome (Chr3: 116.5 Mb) indirectly affects RFI, mediated by the abundance of Syntrophococcus, Prevotella, and an unknown genus of Class Bacilli; and (3) the cow genome (Chr7: 52.8 Mb and Chr11: 6.1-6.2 Mb) affects the abundance of Rikenellaceae RC9 gut group mediated by DMI. Our findings shed light on how the host genome acts directly and indirectly on the rumen microbiome and feed efficiency traits and the potential benefits of the inclusion of specific microbes in selection indexes or as correlated traits in breeding programs. Overall, the multistep approach described here, combining whole-genome scans and causal network reconstruction, allows us to reveal the relationship between genome and microbiome underlying dairy cow feed efficiency.


Asunto(s)
Rumen , Bovinos , Animales , Femenino , Rumen/microbiología , Alimentación Animal , Lactancia , Genoma , Microbioma Gastrointestinal/genética , Polimorfismo de Nucleótido Simple , ARN Ribosómico 16S/genética , Microbiota/genética , Fenotipo , Redes Reguladoras de Genes , Genotipo , Industria Lechera
2.
J Dairy Sci ; 107(10): 8193-8204, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38908714

RESUMEN

The rumen microbiome is crucial for converting feed into absorbable nutrients used for milk synthesis, and the efficiency of this process directly affects the profitability and sustainability of the dairy industry. Recent studies have found that the rumen microbial composition explains part of the variation in feed efficiency traits, including dry matter intake, milk energy, and residual feed intake. The main goal of this study was to reveal relationships between the host genome, the rumen microbiome, and dairy cow feed efficiency using structural equation models. Our specific objectives were to (1) infer the mediation effects of the rumen microbiome on feed efficiency traits, (2) estimate the direct and total heritability of feed efficiency traits, and (3) calculate the direct and total breeding values of feed efficiency traits. Data consisted of dry matter intake, milk energy, and residual feed intake records, SNP genotype data, and 16S rRNA rumen microbial abundances from 448 mid-lactation Holstein cows from 2 research farms. We implemented structural equation models such that the host genome directly affects the phenotype (GP → P) and the rumen microbiome (GM → P), and the microbiome affects the phenotype (M → P), partially mediating the effect of the host genome on the phenotype (G → M → P). We found that 7% to 30% of microbes within the rumen microbial community had structural coefficients different from zero. We classified these microbes into 3 groups that could have different uses in dairy farming. Microbes with heritability <0.10 but significant causal effects on feed efficiency are attractive for external interventions. On the other hand, 2 groups of microbes with heritability ≥0.10, significant causal effects, and genetic covariances and causal effects with the same or opposite sign to feed efficiency are attractive for selective breeding, improving or decreasing the trait heritability and response to selection, respectively. In general, the inclusion of the different microbes in genomic models tends to decrease the trait heritability rather than increase it, ranging from -15% to +5% depending on the microbial group and phenotypic trait. Our findings provide more understanding to target rumen microbes that can be manipulated, either through selection or management interventions, in order to improve feed efficiency traits.


Asunto(s)
Alimentación Animal , Microbiota , Rumen , Animales , Bovinos , Rumen/microbiología , Femenino , Microbiota/genética , Leche , Lactancia , Fenotipo , Genoma
3.
Sci Rep ; 14(1): 11864, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789554

RESUMEN

Objectives were to assess differences in uterine microbiome associated with clinical cure and pregnancy outcomes in dairy cows treated for metritis. Cows with metritis (reddish-brownish, watery, and fetid vaginal discharge) were paired with cows without metritis based on parity and days postpartum. Uterine contents were collected through transcervical lavage at diagnosis, five days later following antimicrobial therapy (day 5), and at 40 days postpartum. Uterine microbiome was assessed by sequencing the V4 hypervariable region of the 16S rRNA gene. Although alpha-diversity based on Chao1, Shannon, and inverse Simpson indexes at diagnosis did not differ between cows with and without metritis, disease was associated with differences in beta-diversity. Prevalence of Porphyromonas, Bacteroides, and Veillonella was greater in cows with metritis. Streptococcus, Sphingomonas, and Ureaplasma were more prevalent in cows without metritis. Differences in beta-diversity between cows with and without metritis persisted on day 5. Uterine microbiome was not associated with clinical cure. Richness and alpha-diversity, but not beta-diversity, of uterine microbiome 40 days postpartum were associated with metritis and pregnancy. No relationship between uterine microbiome and pregnancy outcomes was observed. Results indicate that factors other than changes in intrauterine bacterial community underlie fertility loss and clinical cure in cows with metritis.


Asunto(s)
Enfermedades de los Bovinos , Endometritis , Microbiota , Resultado del Embarazo , ARN Ribosómico 16S , Útero , Femenino , Animales , Bovinos , Embarazo , Útero/microbiología , Endometritis/microbiología , Endometritis/veterinaria , Endometritis/tratamiento farmacológico , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/terapia , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación
4.
mBio ; 15(6): e0102724, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38742889

RESUMEN

Escherichia coli has been attributed to playing a major role in a cascade of events that affect the prevalence and severity of uterine disease in cattle. The objectives of this project were to (i) define the association between the prevalence of specific antimicrobial resistance and virulence factor genes in E. coli with the clinical status related to uterine infection, (ii) identify the genetic relationship between E. coli isolates from cows with diarrhea, with mastitis, and with and without metritis, and (iii) determine the association between the phenotypic and genotypic antimicrobial resistance identified on the E. coli isolated from postpartum cattle. Bacterial isolates (n = 148) were obtained from a larger cross-sectional study. Cows were categorized into one of three clinical groups before enrollment: metritis, cows with purulent discharge, and control cows. For genomic comparison, public genomes (n = 130) from cows with diarrhea, mastitis, and metritis were included in a genome-wide association study, to evaluate differences between the drug classes or the virulence factor category among clinical groups. A distinct E. coli genotype associated with metritis could not be identified. Instead, a high genetic diversity among the isolates from uterine sources was present. A virulence factor previously associated with metritis (fimH) using PCR was not associated with metritis. There was moderate accuracy for whole-genome sequencing to predict phenotypic resistance, which varied depending on the antimicrobial tested. Findings from this study contradict the traditional pathotype classification and the unique intrauterine E. coli genotype associated with metritis in dairy cows.IMPORTANCEMetritis is a common infectious disease in dairy cattle and the second most common reason for treating a cow with antimicrobials. The pathophysiology of the disease is complex and is not completely understood. Specific endometrial pathogenic Escherichia coli have been reported to be adapted to the endometrium and sometimes lead to uterine disease. Unfortunately, the specific genomic details of the endometrial-adapted isolates have not been investigated using enough genomes to represent the genomic diversity of this organism to identify specific virulence genes that are consistently associated with disease development and severity. Results from this study provide key microbial ecological advances by elucidating and challenging accepted concepts for the role of Intrauterine E. coli in metritis in dairy cattle, especially contradicting the existence of a unique intrauterine E. coli genotype associated with metritis in dairy cows, which was not found in our study.


Asunto(s)
Enfermedades de los Bovinos , Infecciones por Escherichia coli , Escherichia coli , Genotipo , Periodo Posparto , Factores de Virulencia , Bovinos , Animales , Femenino , Factores de Virulencia/genética , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Escherichia coli/genética , Escherichia coli/patogenicidad , Escherichia coli/aislamiento & purificación , Escherichia coli/clasificación , Enfermedades de los Bovinos/microbiología , Estudios Transversales , Secuenciación Completa del Genoma , Enfermedades Uterinas/microbiología , Enfermedades Uterinas/veterinaria , Enfermedades Uterinas/genética , Genoma Bacteriano , Útero/microbiología , Antibacterianos/farmacología , Estudio de Asociación del Genoma Completo , Farmacorresistencia Bacteriana/genética
5.
Anim Microbiome ; 6(1): 5, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321581

RESUMEN

Genetic selection has remarkably helped U.S. dairy farms to decrease their carbon footprint by more than doubling milk production per cow over time. Despite the environmental and economic benefits of improved feed and milk production efficiency, there is a critical need to explore phenotypical variance for feed utilization to advance the long-term sustainability of dairy farms. Feed is a major expense in dairy operations, and their enteric fermentation is a major source of greenhouse gases in agriculture. The challenges to expanding the phenotypic database, especially for feed efficiency predictions, and the lack of understanding of its drivers limit its utilization. Herein, we leveraged an artificial intelligence approach with feature engineering and ensemble methods to explore the predictive power of the rumen microbiome for feed and milk production efficiency traits, as rumen microbes play a central role in physiological responses in dairy cows. The novel ensemble method allowed to further identify key microbes linked to the efficiency measures. We used a population of 454 genotyped Holstein cows in the U.S. and Canada with individually measured feed and milk production efficiency phenotypes. The study underscored that the rumen microbiome is a major driver of residual feed intake (RFI), the most robust feed efficiency measure evaluated in the study, accounting for 36% of its variation. Further analyses showed that several alpha-diversity metrics were lower in more feed-efficient cows. For RFI, [Ruminococcus] gauvreauii group was the only genus positively associated with an improved feed efficiency status while seven other taxa were associated with inefficiency. The study also highlights that the rumen microbiome is pivotal for the unexplained variance in milk fat and protein production efficiency. Estimation of the carbon footprint of these cows shows that selection for better RFI could reduce up to 5 kg of diet consumed per cow daily, potentially reducing up to 37.5% of CH4. These findings shed light that the integration of artificial intelligence approaches, microbiology, and ruminant nutrition can be a path to further advance our understanding of the rumen microbiome on nutrient requirements and lactation performance of dairy cows to support the long-term sustainability of the dairy community.

6.
J Dairy Sci ; 107(5): 3090-3103, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38135048

RESUMEN

It is now widely accepted that dairy cow performance is influenced by both the host genome and rumen microbiome composition. The contributions of the genome and the microbiome to the phenotypes of interest are quantified by heritability (h2) and microbiability (m2), respectively. However, if the genome and microbiome are included in the model, then the h2 reflects only the contribution of the direct genetic effects quantified as direct heritability (hd2), and the holobiont effect reflects the joint action of the genome and the microbiome, quantified as the holobiability (ho2). The objectives of this study were to estimate h2, hd2,m2, and ho2 for dry matter intake, milk energy, and residual feed intake; and to evaluate the predictive ability of different models, including genome, microbiome, and their interaction. Data consisted of feed efficiency records, SNP genotype data, and 16S rRNA rumen microbial abundances from 448 mid-lactation Holstein cows from 2 research farms. Three kernel models were fit to each trait: one with only the genomic effect (model G), one with the genomic and microbiome effects (model GM), and one with the genomic, microbiome, and interaction effects (model GMO). The model GMO, or holobiont model, showed the best goodness-of-fit. The hd2 estimates were always 10% to 15% lower than h2 estimates for all traits, suggesting a mediated genetic effect through the rumen microbiome, and m2 estimates were moderate for all traits, and up to 26% for milk energy. The ho2 was greater than the sum of hd2 and m2, suggesting that the genome-by-microbiome interaction had a sizable effect on feed efficiency. Kernel models fitting the rumen microbiome (i.e., models GM and GMO) showed larger predictive correlations and smaller prediction bias than the model G. These findings reveal a moderate contribution of the rumen microbiome to feed efficiency traits in lactating Holstein cows and strongly suggest that the rumen microbiome mediates part of the host genetic effect.


Asunto(s)
Lactancia , Microbiota , Femenino , Bovinos , Animales , Rumen , ARN Ribosómico 16S , Leche , Fenotipo , Alimentación Animal , Dieta/veterinaria
7.
Metabolites ; 13(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37999252

RESUMEN

The objective of this study was to identify alterations in the vaginal discharge (VD) metabolome and potential biomarkers to predict metritis development and a cure in dairy cows. This prospective cohort study was conducted on two dairies located in CA and TX. Vaginal discharge was evaluated and collected using the Metricheck® device. Cows were examined for metritis at 4, 7, and 9 days in milk (DIM). Cows with a fetid, watery, and reddish-brown uterine discharge were classified as having metritis and randomized to receive ceftiofur (n = 10) or remain untreated (n = 7). A cure was defined as the absence of a fetid, watery, reddish-brown uterine discharge at 14 d after enrollment. Vaginal discharge samples were collected from 86 cows within 6 h after parturition, at 4 and 7 DIM, at metritis diagnosis, and at 4 and 7 days after metritis diagnosis. Cows with metritis (MET; n = 17) were paired with counterparts without metritis (HTH) of a similar DIM and parity (n = 34). The uterine metabolome was evaluated using untargeted gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Metabolomic data were analyzed using the MetaboAnalyst 5.0. Data were log-transformed and auto-scaled for normalization. Univariate analyses, including the fold-change, were performed to identify the metabolites linked to metritis development and its cure and principal component analysis and partial least squares discriminant analysis were performed to explain metabolite variance between animals developing or not developing metritis and being cured or not being cured of metritis. Comparing HTH with MET cows at calving, 12 metabolites were upregulated, and one was downregulated. At four and seven DIM, 51 and 74 metabolites, respectively, were altered between MET and HTH cows. After metritis development, three and five metabolites were upregulated in cows that were cured and in cows that received treatment and were cured, respectively. In all scenarios, the metabolites lignoceric, malic, and maleic acids, ornithine, and hypotaurine, which are associated with arginine/aminoacyl-tRNA biosynthesis and taurine/purine metabolism, were upregulated in HTH cows. Metritis was associated with changes in the uterine metabolome. Cows not being cured of metritis had changes in the uterus metabolome independent of receiving ceftiofur or remaining untreated. Metabolome analysis may be an important tool to understand the vaginal discharge changes during postpartum and the dynamics of metritis development and cures and help to identify biomarkers to predict metritis being cured.

8.
Anim Microbiome ; 5(1): 59, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37986012

RESUMEN

BACKGROUND: The goal of this study was to assess the microbial ecology and diversity present in the uterus of post-partum dairy cows with and without metritis from 24 commercial California dairy farms using shotgun metagenomics. A set subset of 95 intrauterine swab samples, taken from a larger selection of 307 individual cow samples previously collected, were examined for α and ß diversity and differential abundance associated with metritis. Cows within 21 days post-partum were categorized into one of three clinical groups during sample collection: control (CT, n = 32), defined as cows with either no vaginal discharge or a clear, non-purulent mucus vaginal discharge; metritis (MET, n = 33), defined as a cow with watery, red or brown colored, and fetid vaginal discharge; and purulent discharge cows (PUS, n = 31), defined as a non-fetid purulent or mucopurulent vaginal discharge. RESULTS: All three clinical groups (CT, MET, and PUS) were highly diverse, with the top 12 most abundant genera accounting for 10.3%, 8.8%, and 10.1% of mean relative abundance, respectively. The α diversity indices revealed a lower diversity from samples collected from MET and PUS when compared to CT cows. PERMANOVA statistical testing revealed a significant difference (P adjusted < 0.01) in the diversity of genera between CT and MET samples (R2 = 0.112, P = 0.003) and a non-significant difference between MET and PUS samples (R2 = 0.036, P = 0.046). ANCOM-BC analysis revealed that from the top 12 most abundant genera, seven genera were increased in the natural log fold change (LFC) of abundance in MET when compared to CT samples: Bacteroides, Clostridium, Fusobacterium, Phocaeicola, Porphyromonas, Prevotella, and Streptococcus. Two genera, Dietzia and Microbacterium, were decreased in natural LFC of abundance when comparing MET (regardless of treatment) and CT, while no changes in natural LFC of abundance were observed for Escherichia, Histophilus, and Trueperella. CONCLUSIONS: The results presented here, are the current deepest shotgun metagenomic analyses conducted on the bovine uterine microbiome to date (mean of 256,425 genus-level reads per sample). Our findings support that uterine samples from cows without metritis (CT) had increased α-diversity but decreased ß-diversity when compared to metritis or PUS cows, characteristic of dysbiosis. In summary, our findings highlight that MET cows have an increased abundance of Bacteroides, Porphyromonas, and Fusobacterium when compared to CT and PUS, and support the need for further studies to better understand their potential causal role in metritis pathogenesis.

9.
JDS Commun ; 4(5): 406-411, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37727238

RESUMEN

Two experiments were designed to evaluate the effects of altering body condition score (BCS) and the profile of a fatty acid (FA) supplement on the metabolism of Bos indicus Nellore females. In experiment 1, 16 and 24 B. indicus heifers and nonlactating cows, respectively, were assigned to (1) maintenance diet (MNT-MNT; n = 10), (2) maintenance diet and BCS loss (MNT-LSS; n = 10), (3) maintenance diet supplemented with calcium salts of soybean oil for 30 d and BCS loss for 40 d (MNT+CFA-LSS; n = 10), and (4) maintenance diet for 30 d and BCS loss for 40 d with a diet containing calcium salts of soybean oil (MNT-LSS+CFA; n = 10). Following the BCS loss period, MNT-LSS, MNT+CFA-LSS, and MNT-LSS+CFA were fed a diet to promote the gain of BCS. In experiment 2, 40 Bos indicus nulliparous heifers were assigned to (1) maintenance diet (MNT-MNT; n = 10), (2) BCS loss followed by a BCS gain (LSS-REM; n = 10), (3) BCS loss followed by a BCS gain diet with CFA of palm oil (LSS-REM+PLM; n = 10), and (4) BCS loss followed by a BCS gain diet with CFA of soybean oil (LSS-REM+SOY; n = 10). Blood samples were obtained for serum haptoglobin and fecal samples for pH (experiment 2 only). In experiment 1, a treatment × day interaction was observed for BCS during the 60-d BCS loss and gain period. Animals assigned to MNT-MNT had a greater BCS than the other treatment groups on d 40 and 60 of the experiment, but no other differences were observed. Moreover, a treatment × day interaction was observed for serum haptoglobin, as on d 60, MNT-LSS had a greater mean serum haptoglobin concentration. In experiment 2, a treatment × day interaction was also observed for BCS. From d -4 to 0, LSS-REM and LSS-REM+SOY had a reduced BCS versus MNT-MNT, but also lower for LSS-REM versus MNT-MNT on d 1, and LSS-REM+PLM versus MNT-MNT on d -1 and 0. For serum haptoglobin, no treatment or treatment × day interaction was observed. A treatment × day interaction was observed for fecal pH. From d -10 to 0, MNT often had a lower fecal pH, but during realimentation, LSS-REM heifers had a reduced fecal pH on d 1, 4, and 10. In summary, we failed to demonstrate an increase in serum haptoglobin due to a BCS loss. Still, supplementation with calcium salts of FA alleviated the increase in haptoglobin and maintained fecal pH at more stable values during realimentation, regardless of the FA profile of the supplement.

10.
Sci Rep ; 13(1): 5854, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041192

RESUMEN

Less invasive rumen sampling methods, such as oro-esophageal tubing, became widely popular for exploring the rumen microbiome and metabolome. However, it remains unclear if such methods represent well the rumen contents from the rumen cannula technique. Herein, we characterized the microbiome and metabolome in the rumen content collected by an oro-esophageal tube and by rumen cannula in ten multiparous lactating Holstein cows. The 16S rRNA gene was amplified and sequenced using the Illumina MiSeq platform. Untargeted metabolome was characterized using gas chromatography of a time-of-flight mass spectrometer. Bacteroidetes, Firmicutes, and Proteobacteria were the top three most abundant phyla representing ~ 90% of all samples. Although the pH of oro-esophageal samples was greater than rumen cannula, we found no difference in alpha and beta-diversity among their microbiomes. The overall metabolome of oro-esophageal samples was slightly different from rumen cannula samples yet more closely related to the rumen cannula content as a whole, including its fluid and particulate fractions. Enrichment pathway analysis revealed a few differences between sampling methods, such as when evaluating unsaturated fatty acid pathways in the rumen. The results of the current study suggest that oro-esophageal sampling can be a proxy to screen the 16S rRNA rumen microbiome compared to the rumen cannula technique. The variation introduced by the 16S rRNA methodology may be mitigated by oro-esophageal sampling and the possibility of increasing experimental units for a more consistent representation of the overall microbial population. Studies should consider an under or over-representation of metabolites and specific metabolic pathways depending on the sampling method.


Asunto(s)
Lactancia , Microbiota , Animales , Femenino , Bovinos , ARN Ribosómico 16S/genética , Rumen/microbiología , Cánula , Metaboloma
11.
Sci Rep ; 12(1): 13937, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35978077

RESUMEN

The goals of this study were to evaluate factors affecting recovery and antimicrobial resistance (AMR) in intrauterine E. coli in post-partum dairy cows with and without metritis from commercial California dairy farms. Using a cross-sectional study design, a total of 307 cows were sampled from 25 farms throughout California, from which a total of 162 intrauterine E. coli isolates were recovered. During farm visits, cows within 21 days post-partum were categorized in one of three clinical presentation groups before enrollment: metritis (MET, n = 86), defined as a cow with watery, red or brown colored, and fetid vaginal discharge; cows with purulent discharge (PUS, n = 106), defined as a non-fetid purulent or mucopurulent vaginal discharge; and control cows, (CTL, n = 115) defined as cows with either no vaginal discharge or a clear, non-purulent mucus vaginal discharge. Cows diagnosed as MET had significantly higher odds for recovery of E. coli compared to cows diagnosed as CTL (OR = 2.16, 95% CI: 1.17-3.96), with no significant difference observed between PUS and CTL, and PUS and MET. An increase in days in milk (DIM) at the time of sampling was significantly associated with a decrease in the odds ratio for E. coli recovery from intrauterine swabs (OR = 0.94, 95% CI: 0.89-0.98). All intrauterine E. coli were resistant to ampicillin (AMP), with an AMR prevalence of 30.2% and 33.9% observed for chlortetracycline and oxytetracycline, respectively. Only 8.6% of isolates were resistant to ceftiofur (CEFT), one of the most common drugs used to treat cows on farms sampled. No significant difference in the prevalence of AMR was observed among clinical groups at the individual cow level. At the farm level, a significantly higher odds for isolating intrauterine E. coli resistant to chlortetracycline (OR: 2.6; 95% CI: 3.7-58.0) or oxytetracycline (OR: 1.9; 95% CI: 1.4-33.8) was observed at farms that used an intrauterine infusion of oxytetracycline as a treatment for metritis when compared to those farms that did not use this practice. Findings from this study indicate the need for further research supporting a broader understanding of farm practices driving AMR in cows with metritis, as well as data to increase the accuracy of breakpoints for AMR classification of intrauterine E. coli from cattle.


Asunto(s)
Enfermedades de los Bovinos , Clortetraciclina , Endometritis , Infecciones por Escherichia coli , Oxitetraciclina , Enfermedad Inflamatoria Pélvica , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bovinos , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/tratamiento farmacológico , Enfermedades de los Bovinos/epidemiología , Estudios Transversales , Farmacorresistencia Bacteriana , Endometritis/tratamiento farmacológico , Endometritis/epidemiología , Endometritis/veterinaria , Escherichia coli , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Granjas , Femenino , Humanos , Factores de Riesgo
12.
Antibiotics (Basel) ; 11(8)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36009897

RESUMEN

Mastitis is one of the main contributors to antimicrobial resistance in livestock, so alternative therapies are being investigated to address it. The present study assessed the capability of recombinant bovine interleukin-8 (rbIL-8) to improve neutrophil function in the mammary gland and resolve chronic high somatic cell count (SCC) in Holstein cows. Multiparous cows (n = 8) with more than 300,000 SCC per mL were allocated to one of two intramammary infusions: saline (10 mL of saline solution) or rbIL-8 (1.57 mg/mL of recombinant bovine IL-8 diluted in 9 mL of saline). In addition, there was an untreated control group (n = 2, SCC < 300,000 SCC/mL). Milk samples were collected post-treatment at 0, 4, 8, 12, 24, 48, and 144 h to quantify milk SCC, haptoglobin, and IgG concentrations. Neutrophil's phagocytosis in milk and blood was evaluated via flow cytometry at 0, 24, and 48 h. The log of SCC did not differ between the infused groups (p = 0.369). Neutrophils presented a similar log of cells with high fluorescence for propidium-iodide (PI) and dihydrorhodamine (DHR) in milk (p = 0.412) and blood samples (p = 0.766) in both infused groups. Intramammary infusion of 1.57 mg/mL of rbIL-8 did not improve neutrophils response and failed to resolve chronic high SCC.

13.
Sci Rep ; 12(1): 4904, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35318351

RESUMEN

Fermentation of dietary nutrients in ruminants' gastrointestinal (GI) tract is an essential mechanism utilized to meet daily energy requirements. Especially in lactating dairy cows, the GI microbiome plays a pivotal role in the breakdown of indigestible plant polysaccharides and supply most AAs, fatty acids, and gluconeogenic precursors for milk synthesis. Although the contribution of the rumen microbiome to production efficiency in dairy cows has been widely researched over the years, variations throughout the lactation and the lower gut microbiome contribution to these traits remain poorly characterized. Therefore, we investigated throughout lactation the relationship between the rumen and lower gut microbiomes with production efficiency traits in Holstein cows. We found that the microbiome from both locations has temporal stability throughout lactation, yet factors such as feed intake levels played a significant role in shaping microbiome diversity. The composition of the rumen microbiome was dependent on feed intake. In contrast, the lower gut microbiome was less dependent on feed intake and associated with a potentially enhanced ability to digest dietary nutrients. Therefore, milk production traits may be more correlated with microorganisms present in the lower gut than previously expected. The current study's findings advance our understanding of the temporal relationship of the rumen and lower gut microbiomes by enabling a broader overview of the gut microbiome and production efficiency towards more sustainable livestock production.


Asunto(s)
Microbioma Gastrointestinal , Rumen , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Digestión , Femenino , Fermentación , Lactancia , Leche/metabolismo , Rumen/metabolismo
14.
Antibiotics (Basel) ; 10(5)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922743

RESUMEN

Microorganisms, including pathogenic or opportunistic bacteria and fungi, may gain access to the uterus during breeding, and infectious endometritis plays a major role in equine subfertility. This study aimed to assess the post-breeding inflammatory response, endometrial culture, and embryo recovery of mares susceptible to persistent breeding-induced endometritis (PBIE) treated with plasma-rich (PRP) or -poor (PPP) plasma. Mares (n = 12) susceptible to PBIE had three cycles randomly assigned to receive intrauterine infusions of lactate ringer solution (LRS, control), or autologous PRP or PPP pre- (-48 and -24 h) and post-breeding (6 and 24 h). Mares were bred with fresh semen from one stallion. Intrauterine fluid accumulation (IUF) and endometrial neutrophils were assessed every 24 h up to 96 h post-breeding. Uterine cytokines (Ilß, IL6, CXCL8, and IL10) were evaluated before (0 h), 6, and 24 h post-breeding, and endometrial culture three and nine days after breed. Embryo flushing was performed 8 days post-ovulation. Data were analyzed with mixed model, Tukey's post-hoc test, and multivariate regression. PRP treatment reduced endometrial neutrophils, post-breeding IUF, and pro-inflammatory cytokines when compared to control-assigned cycles, but not significantly different than PPP. Controls had a significantly higher percentage of positive bacterial cultures (33%) in comparison to PRP-assigned cycles (0%), whereas cycles treated with PPP were not significantly different from the other groups (25%). The PRP-assigned cycles had significantly greater embryo recovery rates (83%) than the control (33%), though not significantly different than PPP (60%). Plasma infusion reduced the duration and intensity of the post-breeding inflammatory response and improved embryo recovery in mares susceptible to PBIE. Platelets incrementally downregulate PBIE and appear to have a dose-dependent antimicrobial property.

15.
Front Vet Sci ; 8: 786480, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35111838

RESUMEN

Nerve growth factor-ß (NGF) is critical for ovulation in the mammalian ovary and is luteotrophic when administered systemically to camelids and cattle. This study aimed to assess the direct effects of purified bovine NGF on steroidogenesis and angiogenic markers in the bovine pre-ovulatory follicle. Holstein heifers (n = 2) were synchronized with a standard protocol, and heifers with a preovulatory follicle (≥ 12 mm) had the ovary containing the dominant follicle removed via colpotomy. Pre-ovulatory follicles were dissected into 24 pieces containing theca and granulosa cells that were randomly allocated into culture media supplemented with either purified bovine NGF (100 ng/mL) or untreated (control) for 72 h. The supernatant media was harvested for quantification of progesterone, testosterone, and estradiol concentrations, whereas explants were subjected to mRNA analyses to assess expression of steroidogenic and angiogenic markers. Treatment of follicle wall pieces with NGF upregulated gene expression of steroidogenic enzyme HDS17B (P = 0.04) and increased testosterone production (P < 0.01). However, NGF treatment did not alter production of progesterone (P = 0.81) or estradiol (P = 0.14). Consistently, gene expression of steroidogenic enzymes responsible for producing these hormones (STAR, CYP11A1, HSD3B, CYP17A1, CYP19A1) were unaffected by NGF treatment (P ≥ 0.31). Treatment with NGF downregulated gene expression of the angiogenic enzyme FGF2 (P = 0.02) but did not alter PGES (P = 0.63), VEGFA (P = 0.44), and ESR1 (P = 0.77). Collectively, these results demonstrate that NGF from seminal plasma may interact directly on the theca and granulosa cells of the bovine pre-ovulatory follicle to stimulate testosterone production, which may be secondary to theca cell proliferation. Additionally, decreased FGF2 expression in NGF-treated follicle wall cells suggests hastened onset of follicle wall cellular remodeling that occurs during early luteal development.

16.
Equine Vet J ; 53(2): 385-396, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32479667

RESUMEN

BACKGROUND: Recent studies have shown that fluoroquinolones, specifically, enrofloxacin and its active metabolite (ciprofloxacin), cross the equine placenta without causing gross or histological lesions in the first and third trimester fetuses or resulting foal. However, it is possible that in utero exposure to fluoroquinolones may cause subtle lesions not detectable by standard means; thus, a more in-depth assessment of potential toxicity is warranted. OBJECTIVES: To use quantitative magnetic resonance imaging (qMRI), biomechanical testing, and chondrocyte gene expression to evaluate the limbs of foals exposed to enrofloxacin during the third trimester of pregnancy. STUDY DESIGN: In vivo and control terminal experiment. METHODS: Healthy mares at 280 days gestation were assigned into three groups: untreated (n = 5), recommended therapeutic (7.5 mg/kg enrofloxacin, PO, SID, n = 6) or supratherapeutic (15 mg/kg, PO, SID, n = 6) doses for 14 days. Mares carried and delivered to term and nursed their foals for ~30 days. Two additional healthy foals born from untreated mares were treated post-natally with enrofloxacin (10 mg/kg PO, SID, for 5 days). By 30 days, foal stifles, hocks, elbows, and shoulders were radiographed, foals were subjected to euthanasia, and foal limbs were analysed by quantitative MRI, structural MRI, biomechanical testing and chondrocyte gene expression. RESULTS: Osteochondral lesions were detected with both radiography and structural MRI in foals from both enrofloxacin-treated and untreated mares. Severe cartilage erosions, synovitis and joint capsular thickening were identified in foals treated with enrofloxacin post-natally. Median cartilage T2 relaxation times differed between joints but did not differ between treatment groups. MAIN LIMITATIONS: A small sample size was assessed and there was no long-term follow-up. CONCLUSION: While further research is needed to address long-term foal outcomes, no differences were seen in advanced imaging, biomechanical testing or gene expression by 30 days of age, suggesting that enrofloxacin may be a safe and useful antibiotic for select bacterial infections in pregnant mares.


Asunto(s)
Cartílago Articular , Fluoroquinolonas , Animales , Antibacterianos/toxicidad , Ciprofloxacina , Enrofloxacina , Femenino , Fluoroquinolonas/toxicidad , Caballos , Embarazo
17.
Animals (Basel) ; 10(12)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255737

RESUMEN

The objectives of this study were to assess the cooling and freezing of donkey epididymal semen harvested immediately after castration (Experiment 1, n = 4) or after the shipment (24 or 48 h) of epididymides attached to testicles (Experiment 2, n = 14) or dissected apart (Experiment 3, n = 36). In each experiment, semen was frozen immediately (Non-Centrif) in an egg yolk-based semen extender (EY) or after processing through cushion-centrifugation (Centrif) while extended in a skim milk-based extender (SC). In all three experiments, cooled, pre-freeze, and post-thaw epididymal semen was assessed for total motility (TM), progressive motility (PM), plasma membrane integrity (PMI), and high mitochondrial membrane potential (HMMP). Data were analyzed with R using mixed models and Tukey's test as posthoc. Results showed that the cooling of epididymal semen up to 24 h after harvesting did not affect motility parameters or plasma membrane integrity; furthermore, in Experiment 3, the post-thaw evaluation of both Centrif and Non-Centrif achieved similar TM and PM. Collectively, the post-thaw results revealed low motility parameters across groups; while, the PMI and HMMP did not reflect this trend, and the values remained high, suggesting that there was a lack of epididymal sperm activation with either centrifugation or extenders. In summary, freshly harvested and cooled-shipped and cooled semen had satisfactory semen parameters. Future studies need to address donkey epididymal semen fertility in mares and jennies.

18.
Front Vet Sci ; 7: 574516, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195570

RESUMEN

We evaluated if an additional GnRH injection 7 days before pre-synchronization with simultaneous PGF2α and GnRH (PG+G) would improve responses to presynchronization, synchronization, and pregnancy per AI (P/AI). We hypothesized that administering GnRH 7 days before PG+G would increase ovulation and corpus luteum (CL) presence at the PG+G, improve response to OvSynch treatments and P/AI. Holstein cows were blocked by parity and randomly assigned to either a PG+G (Control, n = 205); or to GnRH followed 7 days later by PG+G (ExtG, n = 201). At enrollment, Control was left untreated, whereas ExtG received GnRH. Seven days after enrollment, Control and ExtG received PG+G followed by OvSynch 7 days later (GnRH, 7 days PGF2α, 56 h GnRH, 16 h timed AI). Ovarian dynamics were assessed using ultrasonography in a subset of cows (n = 53 for Control; and n = 50 for ExtG) at each treatment, except the 2nd GnRH of OvSynch. Pregnancy diagnosed at 32- and 67-days post AI. Ovulation at enrollment tended (P = 0.06) to be higher for ExtG, but ovulation was not different at PG+G (P = 0.41) and first GnRH of the OvSynch (P = 0.25). There was a tendency (P = 0.08) for ExtG to have larger CL than Control at PGF2α of the OvSynch. There were no differences in CL and follicle sizes in any other treatment point assessed. There were no differences (P = 0.12) in luteolysis between treatments after PG+G. Overall P/AI was similar between treatments on Day 32 (Control = 33.0% vs. ExtG = 34.6%, P = 0.75) and 67 (Control = 31.8% vs. ExtG = 32.5%, P = 0.29) post AI. There was a tendency for an interaction between treatment and parity (P = 0.09) for P/AI at day 67 post-AI. In multiparous cows, ExtG tended to have greater P/AI than Control, whereas, in primiparous cows Control tended to have greater P/AI than ExtG at day 67 post-AI. In conclusion, the effects of GnRH 7 days before PG+G presynchronization lead to positive and negative tendencies, respectively, in multiparous and primiparous cows for P/AI at day 67 post-AI and needs further investigation.

19.
J Equine Vet Sci ; 92: 103104, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32797772

RESUMEN

The objective of this study was to compare semen parameters and embryo recovery rates of cooled stallion semen extended with INRA 96 or BotuSemen Gold. In experiment 1, 45 ejaculates from nine mature stallions were collected, assessed, and equally split between both extenders and then extended to 50 million sperm/mL. Then, the extended semen was stored in three passive cooling containers (Equitainer, Equine Express II, and BotuFlex) for 48 hours. In experiment 2, the same ejaculates extended in experiment 1 were cushion-centrifuged, the supernatant was discarded, and the pellets were resuspended at 100 million sperm/mL with their respective extender. Semen was then cooled and stored as in experiment 1. In both experiments, sperm motility parameters, plasma membrane integrity, and high mitochondrial membrane potential were assessed at 0, 24, and 48 hours post cooling. For experiment 3, 12 mares (n = 24 cycles) were bred with 48 hour-cooled semen from one stallion. Semen was processed as described in experiment 1. Mares had embryo flushing performed by 8-day post-ovulation. In experiment 1, BotuSemen Gold displayed superior total and progressive motility relative to INRA 96 (P < .05). There were no significant differences between the types of containers in any experiment. In experiment 2, INRA 96 and BotuSemen Gold extenders had similar total and progressive motility, but BotuSemen Gold had superior sperm velocity parameters at all timepoints. Embryo recovery was identical for both extenders (50%). Finally, the results obtained herein suggest that BotuSemen Gold is a suitable alternative to be included in semen cooling tests against INRA 96 in clinical practice.


Asunto(s)
Ciclodextrinas , Preservación de Semen , Animales , Caseínas , Colesterol , Femenino , Caballos , Masculino , Semen , Preservación de Semen/veterinaria , Motilidad Espermática
20.
Theriogenology ; 148: 37-47, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32126394

RESUMEN

The objective of this study was to determine the effects of bovine nerve growth factor-ß (NGF) on pre-ovulatory follicle vascular area, LH release, ovulation, and luteal function when administered systemically to heifers. Post-pubertal Holstein heifers (n = 12) received an intravaginal progesterone-releasing device (CIDR) and GnRH agonist (100 µg IM). The CIDR was removed 5 d later, and heifers were given dinoprost (25 mg IM) at CIDR removal and 24 h later, followed by a second dose of GnRH agonist 48 h later. Heifers were randomly assigned to treatments using a cross-over design. For example, heifers assigned to NGF (250 µg reconstituted in 12 mL PBS IM) in replicate 1 were assigned to control (12 mL PBS IM) in replicate 2. Transrectal ultrasonography was performed before treatment and repeated every 4 h up to 32 h to determine the pre-ovulatory follicle diameter, vascular area, and ovulation. Serum samples were obtained to assess LH concentrations during the periovulatory period and every 2 d post-ovulation for measuring progesterone concentrations. A subset of heifers had luteal biopsies performed on days 9 (n = 6 per treatment) and 14 (n = 6 per treatment) post-ovulation to count luteal cell numbers and measure relative mRNA abundance for steroidogenic and angiogenic enzymes and LH receptor. Treatment with NGF increased pre-ovulatory follicle diameter (P = 0.02) and serum LH concentrations (P = 0.03) but did not affect time to ovulation (P = 0.42). Heifers treated with NGF had increased serum progesterone concentrations in the subsequent luteal phase (P = 0.03), but no change in vascular area of the follicle (P = 0.16) or CL (P = 0.20). Heifers treated with NGF had a greater number of small luteal cells (P < 0.01) and a tendency for increased LH receptor (LHR) mRNA abundance in the CL (P = 0.10). There was also increased steroidogenic acute regulatory protein (STAR; P = 0.05) and a tendency for increased cytochrome P450 family 11 (CYP11A1; P = 0.10) mRNA abundance in the CL of NGF-treated heifers. There was decreased prostaglandin E2 synthase (PGES; P = 0.03) and its receptor (PGER; P = 0.05) mRNA abundance and a tendency for decreased cytochrome P450 family 17 subfamily A member 1 (CYP17A1; P = 0.08) and hydroxysteroid 17-beta dehydrogenase (HSD17B; P = 0.06) mRNA abundance in the CL of NGF-treated heifers. Administration of NGF improved CL function in heifers potentially as a result of increased LH release.


Asunto(s)
Bovinos , Cuerpo Lúteo/efectos de los fármacos , Hormona Luteinizante/metabolismo , Factor de Crecimiento Nervioso/farmacología , Folículo Ovárico/efectos de los fármacos , Animales , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...