Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Intervalo de año de publicación
1.
New Phytol ; 237(6): 1951-1961, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36626937

RESUMEN

Iron (Fe) is essential for virtually all organisms, being irreplaceable because of its electrochemical properties that enable many biochemical processes, including photosynthesis. Besides its abundance, Fe is generally found in the poorly soluble form of ferric iron (Fe3+ ), while most plants uptake the soluble form Fe2+ . The model angiosperm Arabidopsis thaliana, for example, captures Fe through a mechanism that lowers rhizosphere pH through proton pumping that increases Fe3+ solubility, which is then reduced by a membrane-bound reductase and transported into the cell by the zinc-regulated, iron-regulated transporter-like protein (ZIP) family protein AtIRT1. ZIP proteins are transmembrane transporters of divalent metals such as Fe2+ , Zn2+ , Mn2+ , and Cd2+ . In this work, we investigated the evolution of functional homologs of IRON-REGULATED TRANSPORTER 1/ZIP in the supergroup Archaeplastida (Viridiplantae + Rhodophyta + Glaucophyta) using 51 genomes of diverse lineages. Our analyses suggest that Fe is acquired through deeply divergent ZIP proteins in land plants and chlorophyte green algae, indicating that Fe2+ uptake by ZIP proteins evolved independently at least twice throughout green plant evolution. Our results indicate that the archetypical IRON-REGULATED TRANSPORTER (IRT) proteins from angiosperms likely emerged before the origin of land plants during early streptophyte algae terrestrialization, a process that required the evolution of Fe acquisition in terrestrial subaerial settings.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Catión , Zinc/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Transporte Iónico , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Plantas/metabolismo , Raíces de Plantas/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo
2.
Plant Physiol Biochem ; 191: 89-98, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36195036

RESUMEN

"Acid soil syndrome" is a worldwide phenomenon characterized by low pH (pH < 5.5), scarce nutrient availability (K+, Ca2+, Mg2+, P), and mineral toxicity such as those caused by soluble aluminium (Al) forms. Regardless of the mineral toxicity, the low pH by itself is detrimental to crop development causing striking sensitivity responses such as root growth arrest. However, low pH-induced responses are still poorly understood and underrated. Here, we review and discuss the core evidence about the action of low pH upon specific root zones, distinct cell types, and possible cellular targets (cell wall, plasma membrane, and alternative oxidase). The role of different players in signaling processes leading to low pH-induced responses, such as the STOP transcription factors, the reactive oxygen species (ROS), auxin, ethylene, and components of the antioxidant system, is also addressed. Information at the molecular level is still lacking to link the low pH targets and the subsequent actors that trigger the observed sensitivity responses. Future studies will have to combine genetic tools to identify the signaling processes triggered by low pH, unraveling not only the mechanisms by which low pH affects root cells but also finding new ways to engineer the tolerance of domesticated plants to acidic stress.


Asunto(s)
Aluminio , Raíces de Plantas , Aluminio/metabolismo , Aluminio/toxicidad , Antioxidantes/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Minerales/metabolismo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Suelo/química , Factores de Transcripción/metabolismo
3.
FEMS Microbiol Ecol ; 98(6)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35488867

RESUMEN

Raphidiopsis (=Cylindrospermopsis) raciborskii was described as a subtropical-tropical cyanobacterium, later reported expanding into temperate regions. Heterocyte presence used to distinguish Cylindrospermopsis from the very similar Raphidiopsis, but recently the two genera were recognized as one and unified. This study aimed to investigate how heterocyte production is related to nitrogen (N) limitation in heterocytous and non-heterocytous strains of R.raciborskii. High N-concentrations did not inhibit heterocyte development in some strains, while prolonged N-starvation periods never stimulated production in others. RT-qPCR was used to examine the genetic background, through the expression patterns of nifH, ntcA and hetR. While gene expression increased under N-restriction, N-sufficiency did not suppress nifH transcripts as previously observed in other diazotrophyc cyanobacteria, suggesting that heterocyte production in R. raciborskii is not regulated by N-availability. Heterocytous and non-heterocytous strains were genotypically characterized to assess their phylogenetic relationships. In the phylogenetic tree, clusters were intermixed and confirmed Raphidiopsis and Cylindrospermopsis as the same genus. The tree supported previous findings of earlier splitting of American strains, while contesting the African origin hypothesis. The existence of two lines of Chinese strains, with distinct evolutionary patterns, is a significant addition that could lead to new hypotheses of the species biogeography.


Asunto(s)
Cianobacterias , Cylindrospermopsis , Cianobacterias/genética , Expresión Génica , Filogenia , Filogeografía
4.
J Plant Physiol ; 221: 11-21, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29223878

RESUMEN

Plants are sessile organisms that must perceive and respond to various environmental constraints throughout their life cycle. Among these constraints, drought stress has become the main limiting factor to crop production around the world. Water deprivation is perceived primarily by the roots, which efficiently signal the shoot to trigger drought responses in order to maximize a plant's ability to survive. In this study, the tomato (Solanum lycopersicum L.) mutant procera (pro), with a constitutive response to gibberellin (GA), and its near isogenic line cv. Micro-Tom (MT), were used in reciprocal grafting under well-watered and water stress conditions to evaluate the role of GA signaling in root-to-shoot communication during drought stress. Growth, oxidative stress, gene expression, water relations and hormonal content were measured in order to provide insights into GA-mediated adjustments to water stress. All graft combinations with pro (i.e. pro/pro, MT/pro and pro/MT) prevented the reduction of growth under stress conditions without a reduction in oxidative stress. The increase of oxidative stress was followed by upregulation of SlDREB2, a drought-tolerance related gene, in all drought-stressed plants. Scions harboring the pro mutation tended to increase the abscisic acid (ABA) content, independent of the rootstock. Moreover, the GA sensitivity of the rootstock modulated stomatal conductance and water use efficiency under drought stress, indicating GA and ABA crosstalk in the adjustment of growth and water economy.


Asunto(s)
Sequías , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Solanum lycopersicum/fisiología , Regulación de la Expresión Génica , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/metabolismo
5.
Genet Mol Biol ; 40(1 suppl 1): 346-359, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28399192

RESUMEN

Nitrogen (N) is quantitatively the main nutrient required by coffee plants, with acquisition mainly by the roots and mostly exported to coffee beans. Nitrate (NO3-) and ammonium (NH4+) are the most important inorganic sources for N uptake. Several N transporters encoded by different gene families mediate the uptake of these compounds. They have an important role in source preference for N uptake in the root system. In this study, we performed a genome-wide analysis, including in silico expression and phylogenetic analyses of AMT1, AMT2, NRT1/PTR, and NRT2 transporters in the recently sequenced Coffea canephora genome. We analyzed the expression of six selected transporters in Coffea arabica roots submitted to N deficiency. N source preference was also analyzed in C. arabica using isotopes. C. canephora N transporters follow the patterns observed for most eudicots, where each member of the AMT and NRT families has a particular role in N mobilization, and where some of these are modulated by N deficiency. Despite the prevalence of putative nitrate transporters in the Coffea genome, ammonium was the preferential inorganic N source for N-starved C. arabica roots. This data provides an important basis for fundamental and applied studies to depict molecular mechanisms involved in N uptake in coffee trees.

6.
Genet. mol. biol ; 40(1,supl.1): 346-359, 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-892391

RESUMEN

Abstract Nitrogen (N) is quantitatively the main nutrient required by coffee plants, with acquisition mainly by the roots and mostly exported to coffee beans. Nitrate (NO3-) and ammonium (NH4+) are the most important inorganic sources for N uptake. Several N transporters encoded by different gene families mediate the uptake of these compounds. They have an important role in source preference for N uptake in the root system. In this study, we performed a genome-wide analysis, including in silico expression and phylogenetic analyses of AMT1, AMT2, NRT1/PTR, and NRT2 transporters in the recently sequenced Coffea canephora genome. We analyzed the expression of six selected transporters in Coffea arabica roots submitted to N deficiency. N source preference was also analyzed in C. arabica using isotopes. C. canephora N transporters follow the patterns observed for most eudicots, where each member of the AMT and NRT families has a particular role in N mobilization, and where some of these are modulated by N deficiency. Despite the prevalence of putative nitrate transporters in the Coffea genome, ammonium was the preferential inorganic N source for N-starved C. arabica roots. This data provides an important basis for fundamental and applied studies to depict molecular mechanisms involved in N uptake in coffee trees.

7.
Plant Cell Rep ; 28(8): 1169-77, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19484241

RESUMEN

We analyzed the impact of ethylene and auxin disturbances on callus, shoots and Agrobacterium rhizogenes-induced hairy root formation in tomato (Solanum lycopersicum L.). The auxin low-sensitivity dgt mutation showed little hairy root initiation, whereas the ethylene low-sensitivity Nr mutation did not differ from the control Micro-Tom cultivar. Micro-Tom and dgt hairy roots containing auxin sensitivity/biosynthesis rol and aux genes formed prominent callus onto media supplemented with cytokinin. Under the same conditions, Nr hairy roots did not form callus. Double mutants combining Rg1, a mutation conferring elevated shoot formation capacity, with either dgt or Nr produced explants that formed shoots with little callus proliferation. The presence of rol + aux genes in Rg1 hairy roots prevented shoot formation. Taken together, the results suggest that although ethylene does not affect hairy root induction, as auxin does, it may be necessary for auxin-induced callus formation in tomato. Moreover, excess auxin prevents shoot formation in Rg1.


Asunto(s)
Etilenos/farmacología , Ácidos Indolacéticos/farmacología , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Solanum lycopersicum/genética , Mutación , Fenotipo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...