Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Extracell Biol ; 2(10): e119, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38939736

RESUMEN

Pleural effusion occurs in both benign and malignant pleural disease. In malignant pleural effusions, the diagnostic accuracy and sensitivity of pleural fluid cytology is less than perfect, particularly for the diagnosis of malignant pleural mesothelioma, but also in some cases for the diagnosis of metastatic pleural malignancy with primary cancer in the lung, breast or other sites. Extracellular vesicles (EVs) carry an enriched cargo of microRNAs (miRNAs) which are selectively packaged and differentially expressed in pleural disease states. To investigate the diagnostic potential of miRNA cargo in pleural fluid extracellular vesicles (PFEVs), we evaluated methods for isolating the extracellular vesicle (EV) fraction including combinations of ultracentrifugation, size-exclusion chromatography (SEC) and ultrafiltration (10 kDa filter unit). PFEVs were characterized by total and EV-associated protein, nanoparticle tracking analysis and visualisation by transmission electron microscopy. miRNA expression was analyzed by Nanostring nCounter® in separate EV fractions isolated from pleural fluid with or without additional RNA purification by ultrafiltration (3 kDa filter unit). Optimal PFEV yield, purity and miRNA expression were observed when PFEV were isolated from a larger volume of pleural fluid processed through combined ultracentrifugation and SEC techniques. Purification of total RNA by ultrafiltration further enhanced the detectability of PFEV miRNAs. This study demonstrates the feasibility of isolating PFEVs, and the potential to examine PFEV miRNA cargo using Nanostring technology to discover disease biomarkers.

2.
J Extracell Vesicles ; 11(9): e12266, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36124834

RESUMEN

Small extracellular vesicles (sEVs) provide major promise for advances in cancer diagnostics, prognostics, and therapeutics, ascribed to their distinctive cargo reflective of pathophysiological status, active involvement in intercellular communication, as well as their ubiquity and stability in bodily fluids. As a result, the field of sEV research has expanded exponentially. Nevertheless, there is a lack of standardisation in methods for sEV isolation from cells grown in serum-containing media. The majority of researchers use serum-containing media for sEV harvest and employ ultracentrifugation as the primary isolation method. Ultracentrifugation is inefficient as it is devoid of the capacity to isolate high sEV yields without contamination of non-sEV materials or disruption of sEV integrity. We comprehensively evaluated a protocol using tangential flow filtration and size exclusion chromatography to isolate sEVs from a variety of human and murine cancer cell lines, including HeLa, MDA-MB-231, EO771 and B16F10. We directly compared the performance of traditional ultracentrifugation and tangential flow filtration methods, that had undergone further purification by size exclusion chromatography, in their capacity to separate sEVs, and rigorously characterised sEV properties using multiple quantification devices, protein analyses and both image and nano-flow cytometry. Ultracentrifugation and tangential flow filtration both enrich consistent sEV populations, with similar size distributions of particles ranging up to 200 nm. However, tangential flow filtration exceeds ultracentrifugation in isolating significantly higher yields of sEVs, making it more suitable for large-scale research applications. Our results demonstrate that tangential flow filtration is a reliable and robust sEV isolation approach that surpasses ultracentrifugation in yield, reproducibility, time, costs and scalability. These advantages allow for implementation in comprehensive research applications and downstream investigations.


Asunto(s)
Vesículas Extracelulares , Animales , Cromatografía en Gel , Vesículas Extracelulares/química , Filtración/métodos , Humanos , Ratones , Reproducibilidad de los Resultados , Ultracentrifugación/métodos
3.
Cancers (Basel) ; 14(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35008424

RESUMEN

With five-year survival rates as low as 3%, lung cancer is the most common cause of cancer-related mortality worldwide. The severity of the disease at presentation is accredited to the lack of early detection capacities, resulting in the reliance on low-throughput diagnostic measures, such as tissue biopsy and imaging. Interest in the development and use of liquid biopsies has risen, due to non-invasive sample collection, and the depth of information it can provide on a disease. Small extracellular vesicles (sEVs) as viable liquid biopsies are of particular interest due to their potential as cancer biomarkers. To validate the use of sEVs as cancer biomarkers, we characterised cancer sEVs using miRNA sequencing analysis. We found that miRNA-3182 was highly enriched in sEVs derived from the blood of patients with invasive breast carcinoma and NSCLC. The enrichment of sEV miR-3182 was confirmed in oncogenic, transformed lung cells in comparison to isogenic, untransformed lung cells. Most importantly, miR-3182 can successfully distinguish early-stage NSCLC patients from those with benign lung conditions. Therefore, miR-3182 provides potential to be used for the detection of NSCLC in blood samples, which could result in earlier therapy and thus improved outcomes and survival for patients.

4.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34830027

RESUMEN

Breast cancer (BC) is a heterogeneous disease composed of multiple subtypes with different molecular characteristics and clinical outcomes. The metastatic process in BC depends on the transcription factors (TFs) related to epithelial-mesenchymal transition (EMT), including the master regulator Twist1. However, its role beyond EMT in BC subtypes remains unclear. Our study aimed to investigate the role of Twist1, beyond EMT, in the molecular subtypes of BC. In patients, we observed the overexpression of TWIST1 in the HER2+ group. The silencing of TWIST1 in HER2+ BC cells resulted in the upregulation of 138 genes and the downregulation of 174 genes compared to control cells in a microarray assay. In silico analysis revealed correlations between Twist1 and important biological processes such as the Th17-mediated immune response, suggesting that Twist1 could be relevant for IL-17 signaling in HER2+ BC. IL-17 signaling was then examined, and it was shown that TWIST1 knockdown caused the downregulation of leading members of IL-17 signaling pathway. Taken together, our findings suggest that Twist1 plays a role on IL-17 signaling in HER2+ BC.


Asunto(s)
Neoplasias de la Mama/inmunología , Regulación Neoplásica de la Expresión Génica/inmunología , Interleucina-17/inmunología , Proteínas Nucleares/inmunología , Receptor ErbB-2/inmunología , Transducción de Señal/inmunología , Proteína 1 Relacionada con Twist/inmunología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Interleucina-17/genética , Proteínas Nucleares/genética , Receptor ErbB-2/genética , Transducción de Señal/genética , Proteína 1 Relacionada con Twist/genética
5.
Nat Commun ; 12(1): 3543, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112803

RESUMEN

Metastatic spread of a cancer to secondary sites is a coordinated, non-random process. Cancer cell-secreted vesicles, especially exosomes, have recently been implicated in the guidance of metastatic dissemination, with specific surface composition determining some aspects of organ-specific localization. Nevertheless, whether the tumor microenvironment influences exosome biodistribution has yet to be investigated. Here, we show that microenvironmental cytokines, particularly CCL2, decorate cancer exosomes via binding to surface glycosaminoglycan side chains of proteoglycans, causing exosome accumulation in specific cell subsets and organs. Exosome retention results in changes in the immune landscape within these organs, coupled with a higher metastatic burden. Strikingly, CCL2-decorated exosomes are directed to a subset of cells that express the CCL2 receptor CCR2, demonstrating that exosome-bound cytokines are a crucial determinant of exosome-cell interactions. In addition to the finding that cytokine-conjugated exosomes are detected in the blood of cancer patients, we discovered that healthy subjects derived exosomes are also associated with cytokines. Although displaying a different profile from exosomes isolated from cancer patients, it further indicates that specific combinations of cytokines bound to exosomes could likewise affect other physiological and disease settings.


Asunto(s)
Neoplasias de la Mama/sangre , Quimiocina CCL2/metabolismo , Exosomas/metabolismo , Receptores CCR2/metabolismo , Microambiente Tumoral , Animales , Neoplasias de la Mama/patología , Citocinas/metabolismo , Exosomas/inmunología , Exosomas/patología , Femenino , Glicosaminoglicanos/metabolismo , Humanos , Células Asesinas Naturales/inmunología , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Proteoglicanos/metabolismo , Receptores de Citocinas/metabolismo , Bazo/inmunología , Bazo/metabolismo , Bazo/patología , Linfocitos T/inmunología , Microambiente Tumoral/inmunología
6.
Immunity ; 53(4): 805-823.e15, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33053330

RESUMEN

The activating receptor CD226 is expressed on lymphocytes, monocytes, and platelets and promotes anti-tumor immunity in pre-clinical models. Here, we examined the role of CD226 in the function of tumor-infiltrating lymphocytes (TILs) and resistance to immunotherapy. In murine tumors, a large proportion of CD8+ TILs had decreased surface expression of CD226 and exhibited features of dysfunction, whereas CD226hi TILs were highly functional. This correlation was seen also in TILs isolated from HNSCC patients. Mutation of CD226 at tyrosine 319 (Y319) led to increased CD226 surface expression, enhanced anti-tumor immunity and improved efficacy of immune checkpoint blockade (ICB). Mechanistically, tumor-derived CD155, the ligand for CD226, initiated phosphorylation of Y319 by Src kinases, thereby enabling ubiquitination of CD226 by CBL-B, internalization, and proteasomal degradation. In pre-treatment samples from melanoma patients, CD226+CD8+ T cells correlated with improved progression-free survival following ICB. Our findings argue for the development of therapies aimed at maintaining the expression of CD226.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/inmunología , Linfocitos T CD8-positivos/inmunología , Receptores Virales/inmunología , Animales , Línea Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Inhibidores de Puntos de Control Inmunológico/inmunología , Inmunoterapia/métodos , Células Jurkat , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Melanoma/inmunología , Ratones , Ratones Endogámicos C57BL
7.
Am J Hum Genet ; 107(4): 778-787, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32871102

RESUMEN

Breast cancer genome-wide association studies (GWASs) have identified 150 genomic risk regions containing more than 13,000 credible causal variants (CCVs). The CCVs are predominantly noncoding and enriched in regulatory elements. However, the genes underlying breast cancer risk associations are largely unknown. Here, we used genetic colocalization analysis to identify loci at which gene expression could potentially explain breast cancer risk phenotypes. Using data from the Breast Cancer Association Consortium (BCAC) and quantitative trait loci (QTL) from the Genotype-Tissue Expression (GTEx) project and The Cancer Genome Project (TCGA), we identify shared genetic relationships and reveal novel associations between cancer phenotypes and effector genes. Seventeen genes, including NTN4, were identified as potential mediators of breast cancer risk. For NTN4, we showed the rs61938093 CCV at this region was located within an enhancer element that physically interacts with the NTN4 promoter, and the risk allele reduced NTN4 promoter activity. Furthermore, knockdown of NTN4 in breast cells increased cell proliferation in vitro and tumor growth in vivo. These data provide evidence linking risk-associated variation to genes that may contribute to breast cancer predisposition.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Proteínas de Neoplasias/genética , Netrinas/genética , Alelos , Animales , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Elementos de Facilitación Genéticos , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genómica/métodos , Xenoinjertos , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Proteínas de Neoplasias/metabolismo , Netrinas/metabolismo , Fenotipo , Sitios de Carácter Cuantitativo , Riesgo
8.
Front Immunol ; 11: 1308, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655574

RESUMEN

Within the tumor microenvironment, there is an intricate communication happening between tumor and stromal cells. This information exchange, in the form of cytokines, growth factors, extracellular vesicles, danger molecules, cell debris, and other factors, is capable of modulating the function of immune cells. The triggering of specific responses, including phenotypic alterations, can ultimately result in either immune surveillance or tumor cell survival. Macrophages are a well-studied cell lineage illustrating the different cellular phenotypes possible, depending on the tumor microenvironmental context. While our understanding of macrophage responses is well documented in vitro, surprisingly, little work has been done to confirm these observations in the cancer microenvironment. In fact, there are examples of opposing reactions of macrophages to cytokines in cell culture and in vivo tumor settings. Additionally, it seems that different macrophage lineages, for example tissue-resident and monocyte-derived macrophages, respond differently to cytokines and other cancer-derived signals. In this review article, we will describe and discuss the diverging reports on how cancer cells influence monocyte-derived and tissue-resident macrophage traits in vivo.


Asunto(s)
Macrófagos/inmunología , Microambiente Tumoral/inmunología , Animales , Citocinas/inmunología , Vesículas Extracelulares/inmunología , Humanos , Fenotipo
9.
Genome Biol ; 21(1): 8, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31910858

RESUMEN

BACKGROUND: Genome-wide association studies have identified 196 high confidence independent signals associated with breast cancer susceptibility. Variants within these signals frequently fall in distal regulatory DNA elements that control gene expression. RESULTS: We designed a Capture Hi-C array to enrich for chromatin interactions between the credible causal variants and target genes in six human mammary epithelial and breast cancer cell lines. We show that interacting regions are enriched for open chromatin, histone marks for active enhancers, and transcription factors relevant to breast biology. We exploit this comprehensive resource to identify candidate target genes at 139 independent breast cancer risk signals and explore the functional mechanism underlying altered risk at the 12q24 risk region. CONCLUSIONS: Our results demonstrate the power of combining genetics, computational genomics, and molecular studies to rationalize the identification of key variants and candidate target genes at breast cancer GWAS signals.


Asunto(s)
Neoplasias de la Mama/genética , Cromatina/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos
10.
Stem Cell Res Ther ; 10(1): 332, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31747944

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) have been explored as promising tools for treatment of several neurological and neurodegenerative diseases. MSCs release abundant extracellular vesicles (EVs) containing a variety of biomolecules, including mRNAs, miRNAs, and proteins. We hypothesized that EVs derived from human Wharton's jelly would act as mediators of the communication between hMSCs and neurons and could protect hippocampal neurons from damage induced by Alzheimer's disease-linked amyloid beta oligomers (AßOs). METHODS: We isolated and characterized EVs released by human Wharton's jelly mesenchymal stem cells (hMSC-EVs). The neuroprotective action of hMSC-EVs was investigated in primary hippocampal cultures exposed to AßOs. RESULTS: hMSC-EVs were internalized by hippocampal cells in culture, and this was enhanced in the presence of AßOs in the medium. hMSC-EVs protected hippocampal neurons from oxidative stress and synapse damage induced by AßOs. Neuroprotection by hMSC-EVs was mediated by catalase and was abolished in the presence of the catalase inhibitor, aminotriazole. CONCLUSIONS: hMSC-EVs protected hippocampal neurons from damage induced by AßOs, and this was related to the transfer of enzymatically active catalase contained in EVs. Results suggest that hMSC-EVs should be further explored as a cell-free therapeutic approach to prevent neuronal damage in Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/citología , Neuronas/patología , Neuroprotección , Estrés Oxidativo , Sinapsis/patología , Gelatina de Wharton/citología , Animales , Biomarcadores/metabolismo , Catalasa/metabolismo , Exosomas/metabolismo , Exosomas/ultraestructura , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/ultraestructura , Hipocampo/patología , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Multimerización de Proteína , Ratas , Especies Reactivas de Oxígeno/metabolismo , Sinapsis/efectos de los fármacos
11.
Proteomics ; 19(8): e1800180, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30672117

RESUMEN

A manner in which cells can communicate with each other is via secreted nanoparticles termed exosomes. These vesicles contain lipids, nucleic acids, and proteins, and are said to reflect the cell-of-origin. However, for the exosomal protein content, there is limited evidence in the literature to verify this statement. Here, proteomic assessment combined with pathway-enrichment analysis is used to demonstrate that the protein cargo of exosomes reflects the epithelial/mesenchymal phenotype of secreting breast cancer cells. Given that epithelial-mesenchymal plasticity is known to implicate various stages of cancer progression, the results suggest that breast cancer subtypes with distinct epithelial and mesenchymal phenotypes may be distinguished by directly assessing the protein content of exosomes. Additionally, the work is a substantial step toward verifying the statement that cell-derived exosomes reflect the phenotype of the cells-of-origin.


Asunto(s)
Neoplasias de la Mama/patología , Animales , Western Blotting , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/ultraestructura , Línea Celular Tumoral , Cromatografía Liquida , Transición Epitelial-Mesenquimal/fisiología , Exosomas/metabolismo , Exosomas/patología , Exosomas/ultraestructura , Femenino , Humanos , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión
12.
Front Immunol ; 9: 871, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867925

RESUMEN

Tumor-derived exosomes are being recognized as essential mediators of intercellular communication between cancer and immune cells. It is well established that bone marrow-derived macrophages (BMDMs) take up tumor-derived exosomes. However, the functional impact of these exosomes on macrophage phenotypes is controversial and not well studied. Here, we show that breast cancer-derived exosomes alter the phenotype of macrophages through the interleukin-6 (IL-6) receptor beta (glycoprotein 130, gp130)-STAT3 signaling pathway. Addition of breast cancer-derived exosomes to macrophages results in the activation of the IL-6 response pathway, including phosphorylation of the key downstream transcription factor STAT3. Exosomal gp130, which is highly enriched in cancer exosomes, triggers the secretion of IL-6 from BMDMs. Moreover, the exposure of BMDMs to cancer-derived exosomes triggers changes from a conventional toward a polarized phenotype often observed in tumor-associated macrophages. All of these effects can be inhibited through the addition of a gp130 inhibitor to cancer-derived exosomes or by blocking BMDMs exosome uptake. Collectively, this work demonstrates that breast cancer-derived exosomes are capable of inducing IL-6 secretion and a pro-survival phenotype in macrophages, partially via gp130/STAT3 signaling.


Asunto(s)
Exosomas/inmunología , Macrófagos/inmunología , Neoplasias Mamarias Experimentales/inmunología , Transducción de Señal/inmunología , Microambiente Tumoral/inmunología , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Técnicas de Cocultivo , Receptor gp130 de Citocinas/antagonistas & inhibidores , Receptor gp130 de Citocinas/inmunología , Receptor gp130 de Citocinas/metabolismo , Exosomas/efectos de los fármacos , Exosomas/metabolismo , Femenino , Hidrazinas/farmacología , Interleucina-6/inmunología , Interleucina-6/metabolismo , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/inmunología , Macrófagos/citología , Macrófagos/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos C57BL , Cultivo Primario de Células , Quinoxalinas/farmacología , Factor de Transcripción STAT3/inmunología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos
13.
Semin Cell Dev Biol ; 67: 3-10, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28077297

RESUMEN

While tumour cells are classically known to communicate via direct cell-to-cell contact and the secretion of soluble protein-based factors such as cytokines and growth factors, alternative novel mechanisms that promote tumour progression have recently emerged. Now, new critical components of the secretome thought to be involved in tumour progression are exosomes, small vesicles of endocytic origin that carry a variety of bioactive molecules, including proteins, lipids, RNA, as well as DNA molecules. Cancer cell-derived exosomes have been shown to participate in crucial steps of metastatic spread of a primary tumour, ranging from oncogenic reprogramming of malignant cells to formation of pre-metastatic niches. These effects are achieved through the mediation of intercellular cross-talk and subsequent modification of both local and distant microenvironments in an autocrine and paracrine fashion. Here, we summarise the recent findings that implicate this non-canonical signalling within the tumour as a critical driver of metastatic disease progression, and discuss how understanding the molecular mechanisms involved in exosome-mediated metastasis is of great value for the development of new therapeutic strategies to prevent cancer progression.


Asunto(s)
Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral/genética , Transporte Biológico , Comunicación Celular , Citocinas/genética , Citocinas/metabolismo , Progresión de la Enfermedad , Exosomas/patología , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metabolismo de los Lípidos/genética , Metástasis Linfática , Invasividad Neoplásica , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Ácidos Nucleicos/genética , Ácidos Nucleicos/metabolismo
14.
Oncol Lett ; 12(1): 315-322, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27347144

RESUMEN

Hypoxia and necrosis are fundamental features of glioma, and their emergence is critical for the rapid biological progression of this fatal tumor. The presence of vaso-occlusive thrombus is higher in grade IV tumors [glioblastoma multiforme (GBM)] compared with lower grade tumors, suggesting that the procoagulant properties of the tumor contribute to its aggressive behavior, as well as the establishment of tumor hypoxia and necrosis. Tissue factor (TF), the primary cellular initiator of coagulation, is overexpressed in GBMs and likely favors a thrombotic microenvironment. Phosphatase and tensin homolog (PTEN) loss and hypoxia are two common alterations observed in glioma that may be responsible for TF upregulation. In the present study, ST1 and P7 rat glioma lines, with different levels of aggressiveness, were comparatively analyzed with the aim of identifying differences in procoagulant mechanisms. The results indicated that P7 cells display potent procoagulant activity compared with ST1 cells. Flow cytometric analysis showed less pronounced levels of TF in ST1 cells compared with P7 cells. Notably, P7 cells supported factor X (FX) activation via factor VIIa, whereas no significant FXa generation was observed in ST1 cells. Furthermore, the exposure of phosphatidylserine on the surface of P7 and ST1 cells was investigated. The results supported the assembly of prothrombinase complexes, accounting for the production of thrombin. Furthermore, reverse transcription-quantitative polymerase chain reaction showed that CoCl2 (known to induce a hypoxic-like stress) led to an upregulation of TF levels in P7 and ST1 cells. Therefore, increased TF expression in P7 cells was accompanied by increased TF procoagulant activity. In addition, hypoxia increased the shedding of procoagulant TF-bearing microvesicles in both cell lines. Finally, hypoxic stress induced by treatment with CoCl2 upregulated the expression of the PAR1 receptor in both P7 and ST1 cells. In addition to PAR1, P7, but not ST1 cells, expressed higher levels of PAR2 under hypoxic stress. Thus, modulating these molecular interactions may provide additional insights for the development of more efficient therapeutic strategies against aggressive glioma.

15.
Thromb Res ; 132(4): 450-6, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23993901

RESUMEN

Coagulation proteins play a critical role in numerous aspects of tumor biology. Cancer cells express tissue factor (TF), the protein that initiates blood clotting, which frequently correlates with processes related to cell aggressiveness, including primary tumor growth, invasion, and metastasis. It has been demonstrated that TF gets incorporated into tumor-derived microvesicles (MVs), a process that has been correlated with cancer-associated thrombosis. Here, we describe the exchange of TF-bearing MVs between breast cancer cell lines with different aggressiveness potential. The highly invasive and metastatic MDA-MB-231 cells displayed higher surface levels of functional TF compared with the less aggressive MCF-7 cells. MVs derived from MDA-MB-231 cells were enriched in TF and accelerated plasma coagulation, but MCF-7 cell-derived MVs expressed very low levels of TF. Incubating MCF-7 cells with MDA-MB-231 MVs significantly increased the TF activity. This phenomenon was not observed upon pretreatment of MVs with anti-TF or annexin-V, which blocks phosphatidylserine sites on the surface of MVs. Our data indicated that TF-bearing MVs can be transferred between different populations of cancer cells and may therefore contribute to the propagation of a TF-related aggressive phenotype among heterogeneous subsets of cells in a tumor.


Asunto(s)
Neoplasias de la Mama/metabolismo , Micropartículas Derivadas de Células/metabolismo , Exosomas/metabolismo , Tromboplastina/metabolismo , Neoplasias de la Mama/sangre , Neoplasias de la Mama/patología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Femenino , Humanos , Células MCF-7
16.
Biosci Rep ; 33(5)2013 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-23889169

RESUMEN

Several studies have suggested a role for blood coagulation proteins in tumour progression. Herein, we discuss (1) the activation of the blood clotting cascade in the tumour microenvironment and its impact on primary tumour growth; (2) the intravascular activation of blood coagulation and its impact on tumour metastasis and cancer-associated thrombosis; and (3) antitumour therapies that target blood-coagulation-associated proteins. Expression levels of the clotting initiator protein TF (tissue factor) have been correlated with tumour cell aggressiveness. Simultaneous TF expression and PS (phosphatidylserine) exposure by tumour cells promote the extravascular activation of blood coagulation. The generation of blood coagulation enzymes in the tumour microenvironment may trigger the activation of PARs (protease-activated receptors). In particular, PAR1 and PAR2 have been associated with many aspects of tumour biology. The procoagulant activity of circulating tumour cells favours metastasis, whereas the release of TF-bearing MVs (microvesicles) into the circulation has been correlated with cancer-associated thrombosis. Given the role of coagulation proteins in tumour progression, it has been proposed that they could be targets for the development of new antitumour therapies.


Asunto(s)
Coagulación Sanguínea , Neoplasias/sangre , Animales , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Factores de Coagulación Sanguínea/antagonistas & inhibidores , Factores de Coagulación Sanguínea/fisiología , Progresión de la Enfermedad , Humanos , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Neoplasias/patología
17.
PLoS One ; 7(10): e47285, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23077586

RESUMEN

BACKGROUND: Rhodnius prolixus is a blood-sucking bug vector of Trypanosoma cruzi and T. rangeli. T. cruzi is transmitted by vector feces deposited close to the wound produced by insect mouthparts, whereas T. rangeli invades salivary glands and is inoculated into the host skin. Bug saliva contains a set of nitric oxide-binding proteins, called nitrophorins, which deliver NO to host vessels and ensure vasodilation and blood feeding. NO is generated by nitric oxide synthases (NOS) present in the epithelium of bug salivary glands. Thus, T. rangeli is in close contact with NO while in the salivary glands. METHODOLOGY/PRINCIPAL FINDINGS: Here we show by immunohistochemical, biochemical and molecular techniques that inositolphosphate-containing glycolipids from trypanosomatids downregulate NO synthesis in the salivary glands of R. prolixus. Injecting insects with T. rangeli-derived glycoinositolphospholipids (Tr GIPL) or T. cruzi-derived glycoinositolphospholipids (Tc GIPL) specifically decreased NO production. Salivary gland treatment with Tc GIPL blocks NO production without greatly affecting NOS mRNA levels. NOS protein is virtually absent from either Tr GIPL- or Tc GIPL-treated salivary glands. Evaluation of NO synthesis by using a fluorescent NO probe showed that T. rangeli-infected or Tc GIPL-treated glands do not show extensive labeling. The same effect is readily obtained by treatment of salivary glands with the classical protein tyrosine phosphatase (PTP) inhibitor, sodium orthovanadate (SO). This suggests that parasite GIPLs induce the inhibition of a salivary gland PTP. GIPLs specifically suppressed NO production and did not affect other anti-hemostatic properties of saliva, such as the anti-clotting and anti-platelet activities. CONCLUSIONS/SIGNIFICANCE: Taken together, these data suggest that trypanosomatids have overcome NO generation using their surface GIPLs. Therefore, these molecules ensure parasite survival and may ultimately enhance parasite transmission.


Asunto(s)
Enfermedad de Chagas/transmisión , Glucolípidos/metabolismo , Óxido Nítrico/biosíntesis , Rhodnius/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma rangeli/metabolismo , Animales , Enfermedad de Chagas/metabolismo , Enfermedad de Chagas/parasitología , Interacciones Huésped-Parásitos , Insectos Vectores/metabolismo , Insectos Vectores/parasitología , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo I/metabolismo , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/metabolismo , Rhodnius/parasitología , Glándulas Salivales/efectos de los fármacos , Glándulas Salivales/metabolismo , Trypanosoma cruzi/patogenicidad , Trypanosoma rangeli/patogenicidad , Vanadatos/farmacología
18.
Thromb Res ; 130(3): e163-70, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22683021

RESUMEN

Melanoma is a highly metastatic cancer and there is strong evidence that the clotting initiator protein, tissue factor (TF), contributes to its aggressive pattern. TF inhibitors may attenuate primary tumor growth and metastasis. In this study, we evaluated the effect of ixolaris, a TF inhibitor, on a murine model of melanoma B16F10 cells. Enzymatic assays performed with B16F10 and human U87-MG tumor cells as the TF source showed that ixolaris inhibits the generation of FX in either murine, human or hybrid FVIIa/TF complexes. The effect of ixolaris on the metastatic potential was further estimated by intravenous injection of B16F10 cells in C57BL/6 mice. Ixolaris (250 µg/kg) dramatically decreased the number of pulmonary tumor nodules (4 ± 1 compared to 47 ± 10 in the control group). Furthermore, a significant decrease in tumor weights was observed in primary tumor growth assays in animals treated with ixolaris (250 µg/kg) from days 3 to 18 after a subcutaneous inoculation of melanoma cells. Remarkably, immunohistochemical analyses showed that inhibition of melanoma growth by ixolaris is accompanied by a significant downregulation of both vascular endothelial growth factor (VEGF) expression and microvascular density in the tumor mass. Our data demonstrate that ixolaris targets B16F10 cell-derived TF, resulting in the reduction of both the primary tumor growth and the metastatic potential of melanoma, as well as the inhibition of tumor angiogenesis. Therefore TF may be a potential target for the treatment of this aggressive malignancy.


Asunto(s)
Melanoma/tratamiento farmacológico , Melanoma/secundario , Proteínas y Péptidos Salivales/uso terapéutico , Tromboplastina/antagonistas & inhibidores , Animales , Aumento de la Célula , Línea Celular Tumoral , Proliferación Celular , Humanos , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Resultado del Tratamiento
19.
Thromb Haemost ; 106(4): 712-23, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21800005

RESUMEN

Shedding of microvesicles (MVs) by cancer cells is implicated in a variety of biological effects, including the establishment of cancer-associated hypercoagulable states. However, the mechanisms underlying malignant transformation and the acquisition of procoagulant properties by tumour-derived MVs are poorly understood. Here we investigated the procoagulant and prothrombotic properties of MVs produced by a melanocyte-derived cell line (melan-a) as compared to its tumourigenic melanoma counterpart Tm1. Tumour cells exhibit a two-fold higher rate of MVs production as compared to melan-a. Melanoma MVs display greater procoagulant activity and elevated levels of the clotting initiator protein tissue factor (TF). On the other hand, tumour- and melanocyte-derived MVs expose similar levels of the procoagulant lipid phosphatidylserine, displaying identical abilities to support thrombin generation by the prothrombinase complex. By using an arterial thrombosis model, we observed that melanoma- but not melanocyte-derived MVs strongly accelerate thrombus formation in a TF-dependent manner, and accumulate at the site of vascular injury. Analysis of plasma obtained from melanoma-bearing mice showed the presence of MVs with a similar procoagulant pattern as compared to Tm1 MVs produced in vitro. Remarkably, flow-cytometric analysis demonstrated that 60% of ex vivo MVs are TF-positive and carry the melanoma-associated antigen, demonstrating its tumour origin. Altogether our data suggest that malignant transformation in melanocytes increases the production of procoagulant MVs, which may contribute for a variety of coagulation-related protumoural responses.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Melanocitos/metabolismo , Melanoma/metabolismo , Neoplasias Cutáneas/metabolismo , Tromboplastina/metabolismo , Animales , Coagulación Sanguínea , Línea Celular Tumoral , Transformación Celular Neoplásica , Micropartículas Derivadas de Células/patología , Coagulantes/metabolismo , Humanos , Melanocitos/patología , Melanocitos/trasplante , Melanoma/patología , Melanoma/fisiopatología , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Plasma/metabolismo , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/fisiopatología , Trombofilia , Trombosis , Microambiente Tumoral
20.
Melanoma Res ; 19(5): 301-8, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19550359

RESUMEN

A correlation between cancer and hypercoagulability has been described for more than a century. Patients with cancer are at increased risk for thrombotic complications, and the clotting initiator protein, tissue factor (TF), is possibly involved in this process. In addition to TF, the presence of negatively charged phospholipids, particularly phosphatidylserine (PS), is necessary to support some of the blood-clotting reactions. There are few reports describing PS exposure by tumor cells. In this study, we characterized the procoagulant properties of the murine B16F10 and the human WM-266-4 melanoma cell lines. Flow cytometry analyses showed constitutive TF expression by both cell lines, in contrast to negative staining observed for the nontumorigenic melanocyte lineage, melan-A. In addition, tumor cells accelerate plasma clotting in a number-dependent manner. For WM-266-4, this ability was partially reversed by an anti-TF antibody but not by aprotinin, a nonspecific serine-protease inhibitor. Furthermore, flow-cytometric analyses showed the presence of PS at the outer leaflet of both cell lines. This phenomenon was determinant for the assembly of the intrinsic tenase (FIXa/FVIIIa) and prothrombinase (FXa/FVa) complexes, resulting in the activation of FX to FXa and prothrombin to thrombin, respectively. As a result, incubation of WM-266-4 with human plasma produces robust thrombin generation. In conclusion, simultaneous TF expression and PS exposure are responsible for the highly procoagulant pattern of the aggressive melanoma cell lines B16F10 and WM-266-4. Therefore, these cell lines might be regarded as useful models for studying the role of blood coagulation proteins in tumor biology.


Asunto(s)
Melanoma/sangre , Fosfatidilserinas/farmacología , Tromboplastina/biosíntesis , Animales , Coagulación Sanguínea/efectos de los fármacos , Coagulación Sanguínea/fisiología , Línea Celular Tumoral , Citometría de Flujo , Humanos , Melanoma/metabolismo , Melanoma Experimental/sangre , Melanoma Experimental/química , Ratones , Trombina/biosíntesis , Trombina/metabolismo , Tromboplastina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...