Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Intervalo de año de publicación
1.
Plant Dis ; 104(1): 137-146, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31730415

RESUMEN

Mango anthracnose, caused by Colletotrichum spp., is the most significant disease of mango (Mangifera indica L.) in almost all production areas around the world. In Mexico, mango anthracnose has only been attributed to C. asianum and C. gloeosporioides. The aims of this study were to identify the Colletotrichum species associated with mango anthracnose symptoms in Mexico by phylogenetic inference using the ApMat marker, to determine the distribution of these species, and to test their pathogenicity and virulence on mango fruits. Surveys were carried out from 2010 to 2012 in 59 commercial orchards in the major mango growing states of Mexico, and a total of 118 isolates were obtained from leaves, twigs, and fruits with typical anthracnose symptoms. All isolates were tentatively identified in the C. gloeosporioides species complex based on morphological and cultural characteristics. The Bayesian inference phylogenetic tree generated with Apn2/MAT intergenic spacer sequences of 59 isolates (one per orchard) revealed that C. alienum, C. asianum, C. fructicola, C. siamense, and C. tropicale were associated with symptoms of mango anthracnose. In this study, C. alienum, C. fructicola, C. siamense, and C. tropicale are reported for the first time in association with mango tissues in Mexico. This study represents the first report of C. alienum causing mango anthracnose worldwide. The distribution of Colletotrichum species varied among the mango growing states from Mexico. Chiapas was the only state in which all five species were found. Pathogenicity tests on mango fruit cultivar Manila showed that all Colletotrichum species from this study could induce anthracnose lesions. However, differences in virulence were evident among species. C. siamense and C. asianum were the most virulent, whereas C. alienum and C. fructicola were considered the least virulent species.


Asunto(s)
Colletotrichum , Mangifera , Filogenia , Teorema de Bayes , Colletotrichum/clasificación , Colletotrichum/genética , Colletotrichum/patogenicidad , Colletotrichum/fisiología , ADN de Hongos/genética , Mangifera/microbiología , México , Filipinas , Enfermedades de las Plantas/microbiología , Virulencia
2.
Braz. j. med. biol. res ; 48(11): 953-964, Nov. 2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-762901

RESUMEN

Cocos nucifera (L.) (Arecaceae) is commonly called the “coconut tree” and is the most naturally widespread fruit plant on Earth. Throughout history, humans have used medicinal plants therapeutically, and minerals, plants, and animals have traditionally been the main sources of drugs. The constituents of C. nucifera have some biological effects, such as antihelminthic, anti-inflammatory, antinociceptive, antioxidant, antifungal, antimicrobial, and antitumor activities. Our objective in the present study was to review the phytochemical profile, pharmacological activities, and toxicology of C. nucifera to guide future preclinical and clinical studies using this plant. This systematic review consisted of searches performed using scientific databases such as Scopus, Science Direct, PubMed, SciVerse, and Scientific Electronic Library Online. Some uses of the plant were partially confirmed by previous studies demonstrating analgesic, antiarthritic, antibacterial, antipyretic, antihelminthic, antidiarrheal, and hypoglycemic activities. In addition, other properties such as antihypertensive, anti-inflammatory, antimicrobial, antioxidant, cardioprotective, antiseizure, cytotoxicity, hepatoprotective, vasodilation, nephroprotective, and anti-osteoporosis effects were also reported. Because each part of C. nucifera has different constituents, the pharmacological effects of the plant vary according to the part of the plant evaluated.


Asunto(s)
Animales , Humanos , Antiinfecciosos/farmacología , Cocos/química , Fitoterapia , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Analgésicos/farmacología , Antiinflamatorios/farmacología , Anticonvulsivantes/farmacología , Antihipertensivos/farmacología , Huesos/efectos de los fármacos , Cocos/toxicidad , Hipoglucemiantes/farmacología
3.
Braz J Med Biol Res ; 48(11): 953-64, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26292222

RESUMEN

Cocos nucifera (L.) (Arecaceae) is commonly called the "coconut tree" and is the most naturally widespread fruit plant on Earth. Throughout history, humans have used medicinal plants therapeutically, and minerals, plants, and animals have traditionally been the main sources of drugs. The constituents of C. nucifera have some biological effects, such as antihelminthic, anti-inflammatory, antinociceptive, antioxidant, antifungal, antimicrobial, and antitumor activities. Our objective in the present study was to review the phytochemical profile, pharmacological activities, and toxicology of C. nucifera to guide future preclinical and clinical studies using this plant. This systematic review consisted of searches performed using scientific databases such as Scopus, Science Direct, PubMed, SciVerse, and Scientific Electronic Library Online. Some uses of the plant were partially confirmed by previous studies demonstrating analgesic, antiarthritic, antibacterial, antipyretic, antihelminthic, antidiarrheal, and hypoglycemic activities. In addition, other properties such as antihypertensive, anti-inflammatory, antimicrobial, antioxidant, cardioprotective, antiseizure, cytotoxicity, hepatoprotective, vasodilation, nephroprotective, and anti-osteoporosis effects were also reported. Because each part of C. nucifera has different constituents, the pharmacological effects of the plant vary according to the part of the plant evaluated.


Asunto(s)
Antiinfecciosos/farmacología , Cocos/química , Fitoterapia , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Analgésicos/farmacología , Animales , Antiinflamatorios/farmacología , Anticonvulsivantes/farmacología , Antihipertensivos/farmacología , Huesos/efectos de los fármacos , Cocos/toxicidad , Humanos , Hipoglucemiantes/farmacología
4.
J Dent ; 42(11): 1487-94, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25152510

RESUMEN

UNLABELLED: The dentistry literature shows consensus to use the Garvie and Nicholson equation modified by Toraya to quantify the Y-TZP phase transformation. However, this method does not include the possibility of cubic phase transformation and crystallographic texture after artificial ageing, and in this case, it is possible to observe errors of quantification. OBJECTIVES: The aim of this study was to evaluate a dental Y-TZP ageing kinetic of phase transformation under pressure and hydrothermal conditions (130°C, 2bar) and to compare the methods of quantification by the equation of Garvie and Nicholson modified by Toraya and the Rietveld refinement method. METHODS: Discs of Y-TZP (12mm Ø×1.2mm in height) were divided into groups (n=4) according to the ageing times (in the range of 6 and 138h). The superficial characterisation was made using SEM and the XDR for crystallographic analysis. RESULTS: An aggressive superficial degradation process at the beginning of phase transformation in 6-10h of ageing was observed by SEM. The phase transformation quantification showed differences between the methods. It was observed the increase and stabilisation of monoclinic phase until 80% at 40h of ageing by the Garvie and Nicholson modified by Toraya equation, compared to 60% of monoclinic phase and approximately 30% of cubic phase observed by the Rietveld method. CONCLUSION: The Toraya equation showed an overestimated result of monoclinic quantification compared to the Rietveld method. CLINICAL SIGNIFICANCE: The overestimated result of monoclinic phase could lead to different interpretation about the dental Y-TZP ageing process.


Asunto(s)
Cerámica/química , Materiales Dentales/química , Itrio/química , Circonio/química , Algoritmos , Compuestos Inorgánicos de Carbono/química , Cristalografía , Grabado Dental/métodos , Hafnio/química , Calor , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Modelos Químicos , Óxidos/química , Compuestos de Silicona/química , Espectrometría por Rayos X , Propiedades de Superficie , Factores de Tiempo , Difracción de Rayos X
5.
Plant Dis ; 97(9): 1248, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30722427

RESUMEN

From April to June 2010, mango fruits (Mangifera indica L.) (cv. Tommy Atkins) showing post-harvest anthracnose symptoms were collected during a survey conducted in São Francisco Valley, northeastern Brazil. Fruits affected by anthracnose showed sunken, prominent, dark brown to black decay spots. Small pieces (4 to 5 mm) of necrotic tissues were surface sterilized for 1 min in 1.5% NaOCl, washed twice with sterile distilled water, and plated onto potato dextrose agar (PDA) amended with 0.5 g liter-1 streptomycin sulfate. Plates were incubated at 25°C in the dark for 5 to 7 days and colonies that were morphologically similar to species of Colletotrichum were transferred to PDA (1). Identification was made using morphological characteristics and phylogenetic analysis. Two isolates (CMM 4101 and CMM 4102) presented colonies that had white aerial mycelia and orange conidial mass, varying between colorless and pale orange in reverse. Conidia were hyaline, cylindrical, and aseptate 14.52 (10.40 to 20.20) µm long and 4.90 (3.80 to 6.50) µm wide, length/width ratio = 3.0. Mycelial growth rate was 5.20 mm per day at 25°C. Morphological and cultural characterizations were consistent with the description of Colletotrichum karstii (3). PCR amplification by universal primers (ITS1/ITS4) and DNA sequencing of the internal transcribed spacer (ITS1-5.8S-ITS2 rRNA gene cluster) were conducted to confirm the identifications. Analysis of representative sequences (GenBank Accession Nos. HM585409 and HM585406) suggested that the isolated pathogen was C. karstii. Using published ITS data for C. karstii (3), a phylogenetic analysis was made via Bayesian inference, which shows that the isolated fungi belong to the C. karstii clade. Sequences of the isolates obtained in this study were deposited in GenBank (KC295235 and KC295236), and cultures were deposited in the Culture Collection of Phytopathogenic Fungi of the Universidade Federal Rural de Pernambuco (CMM, Recife, Brazil). Pathogenicity tests were conducted with the C. karstii strains on mango fruits cv. Tommy Atkins. Mycelial plugs taken from the margin of actively growing colonies (PDA) of each isolate were applied in shallow wounds (0.4 cm in diameter) at the medium region of the each fruit. PDA discs without fungal growing were used as controls. Inoculated fruits were placed in plastic containers lined with paper towels wetted in distilled water. The containers were partially sealed with plastic bags to maintain high humidity and incubated at 25°C in the dark. The plastic bags and paper towels were removed after 24 h, and fruits were kept at the same temperature. The experiment was arranged in a completely randomized design with four replicates per treatment (isolate) and four fruits per replicate. Typical anthracnose symptoms were observed after 10 days in mango fruits. C. karstii was successfully reisolated from symptomatic mango fruits to fulfill Koch's postulates. C. karstii was previously described from Orchidaceae in southwest China and the United States (2,3). To our knowledge, this is the first report of C. karstii causing mango anthracnose in Brazil and worldwide. References: (1) U. Damm et al. Stud. Mycol. 73:1, 2012. (2) I. Jadrane et al. Plant Dis. 96:1227, 2012. (3) Yang et al. Cryptogamie Mycol. 32:229, 2011.

6.
Plant Dis ; 96(1): 144, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30731883

RESUMEN

From September to December 2010, mango (Mangifera indica L.) stems showing dieback symptoms were collected during a survey conducted in São Francisco Valley, northeastern Brazil. Small pieces (4 to 5 mm) of necrotic tissues were surface sterilized for 1 min in 1.5% NaOCl, washed twice with sterile distilled water, and plated onto potato dextrose agar (PDA) amended with 0.5 g liter-1 streptomycin sulfate. Plates were incubated at 25°C in the dark for 14 to 21 days and colonies that were morphologically similar to species of Botryosphaeriaceae were transferred to PDA. Colonies developed a compact mycelium that was initially white, but becoming gray dark after 4 to 6 days of incubation at 25°C in darkness. Identification was made using morphological characteristics and DNA based molecular techniques. Pycnidia were obtained on 2% water agar with sterilized pine needles as substratum after 3 weeks of incubation at 25°C under near-UV light. Pycnidia were large, multilocular, eustromatic, covered with hyphae; locule totally embedded without ostioles, locule walls consisting of a dark brown textura angularis, becoming thinner and hyaline toward the conidiogenous region. Conidia were hyaline, thin to slightly thickened walled, aseptate, with granular contents, bacilliform, straight to slightly curved, apex and base both bluntly rounded or just blunt, 15.6 to 25.0 (20.8) µm long, and 2.7 to 7.9 (5.2) µm wide, length/width = 4.00. According to these morphological characteristics, three isolates (CMM1364, CMM1365, and CMM1450) were identified as Pseudofusicoccum stromaticum (1,3,4). PCR amplification by universal primers (ITS4/ITS5) and DNA sequencing of the internal transcribed spacer (ITS1-5.8S-ITS2 rRNA gene cluster) were conducted to confirm the identifications through BLAST searches in GenBank. The isolates were 100% homologous with P. stromaticum (3) (GenBank Accession Nos. AY693974 and DQ436935). Representative sequences of the isolates were deposited in GenBank (Accession Nos. JF896432, JF966392, and JF966393). Pathogenicity tests were conducted with the P. stromaticum strains on 5-month-old mango seedlings (cv. Tommy Atkins). Mycelial plugs taken from the margin of actively growing colonies (PDA) of each isolate were applied in shallow wounds (0.4 cm in diameter) on the stem (center) of each plant. Inoculation wounds were wrapped with Parafilm. Control seedlings received sterile PDA plugs. Inoculated and control seedlings (five each) were kept in a greenhouse at 25 to 30°C. After 5 weeks, all inoculated seedlings showed leaf wilting, drying out of the branches, and necrotic lesions in the stems. No symptoms were observed in the control plants. P. stromaticum was successfully reisolated from symptomatic plants to fulfill Koch's postulates. P. stromaticum was described from Acacia, Eucalyptus, and Pinus trees in Venezuela (3,4), and there are no reports of this fungus in other hosts (2). To our knowledge, this is the first report of P. stromaticum causing mango dieback in Brazil and worldwide. References: (1) P. W. Crous et al. Stud. Mycol. 55:235, 2006. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , 18 May 2011. (3) S. Mohali et al. Mycol. Res. 110:405, 2006. (4) S. R. Mohali et al. Fungal Divers. 25:103, 2007.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...