Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Intervalo de año de publicación
2.
Mech Ageing Dev ; 210: 111775, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36641038

RESUMEN

High-fat diet (HFD) promotes obesity-related metabolic complications by activating cellular senescence in white adipose tissue (WAT). Growing evidence supports the importance of microRNA-22 (miR-22) in metabolic disorders and cellular senescence. Recently, we showed that miR-22 deletion attenuates obesity-related metabolic abnormalities. However, whether miR-22 mediates HFD-induced cellular senescence of WAT remains unknown. Here, we uncovered that obese mice displayed increased pri-miR-22 levels and cellular senescence in WAT. However, miR-22 ablation protected mice against HFD-induced WAT senescence. In addition, in vitro studies showed that miR-22 deletion prevented preadipocyte senescence in response to Doxorubicin (Doxo). Loss-of-function studies in vitro and in vivo revealed that miR-22 increases H2ax mRNA and γH2ax levels in preadipocytes and WAT without inducing DNA damage. Intriguingly, miR-22 ablation prevented HFD-induced increase in γH2ax levels and DNA damage in WAT. Similarly, miR-22 deletion prevented Doxo-induced increase in γH2ax levels in preadipocytes. Adipose miR-22 levels were enhanced in middle-aged mice fed a HFD than those found in young mice. Furthermore, miR-22 deletion attenuated fat mass gain and glucose imbalance induced by HFD in middle-aged mice. Overall, our findings indicate that miR-22 is a key regulator of obesity-induced WAT senescence and metabolic disorders in middle-aged mice.


Asunto(s)
Enfermedades Metabólicas , MicroARNs , Ratones , Animales , Obesidad/genética , Obesidad/metabolismo , Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/prevención & control , MicroARNs/genética , MicroARNs/metabolismo , Ratones Endogámicos C57BL
3.
Stem Cell Res Ther ; 13(1): 437, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056380

RESUMEN

BACKGROUND: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising disease model, even though hiPSC-CMs cultured for extended periods display an undifferentiated transcriptional landscape. MiRNA-target gene interactions contribute to fine-tuning the genetic program governing cardiac maturation and may uncover critical pathways to be targeted. METHODS: We analyzed a hiPSC-CM public dataset to identify time-regulated miRNA-target gene interactions based on three logical steps of filtering. We validated this process in silico using 14 human and mouse public datasets, and further confirmed the findings by sampling seven time points over a 30-day protocol with a hiPSC-CM clone developed in our laboratory. We then added miRNA mimics from the top eight miRNAs candidates in three cell clones in two different moments of cardiac specification and maturation to assess their impact on differentiation characteristics including proliferation, sarcomere structure, contractility, and calcium handling. RESULTS: We uncovered 324 interactions among 29 differentially expressed genes and 51 miRNAs from 20,543 transcripts through 120 days of hiPSC-CM differentiation and selected 16 genes and 25 miRNAs based on the inverse pattern of expression (Pearson R-values < - 0.5) and consistency in different datasets. We validated 16 inverse interactions among eight genes and 12 miRNAs (Person R-values < - 0.5) during hiPSC-CMs differentiation and used miRNAs mimics to verify proliferation, structural and functional features related to maturation. We also demonstrated that miR-124 affects Ca2+ handling altering features associated with hiPSC-CMs maturation. CONCLUSION: We uncovered time-regulated transcripts influencing pathways affecting cardiac differentiation/maturation axis and showed that the top-scoring miRNAs indeed affect primarily structural features highlighting their role in the hiPSC-CM maturation.


Asunto(s)
Células Madre Pluripotentes Inducidas , MicroARNs , Células Madre Pluripotentes , Animales , Diferenciación Celular/genética , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo
4.
Cell Physiol Biochem ; 56(3): 293-309, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35781359

RESUMEN

BACKGROUND/AIMS: An obesogenic diet (high fat and sugar, low fiber) is associated with an increased risk for metabolic and cardiovascular disorders. Previous studies have demonstrated that epigenetic changes can modify gene transcription and protein function, playing a key role in the development of several diseases. The methyltransferase Set7 methylates histone and non-histone proteins, influencing diverse biological and pathological processes. However, the functional role of Set7 in obesity-associated metabolic and cardiovascular complications is unknown. METHODS: Wild type and Set7 knockout female mice were fed a normal diet or an obesogenic diet for 12 weeks. Body weight gain and glucose tolerance were measured. The 3T3-L1 cells were used to determine the role of Set7 in white adipogenic differentiation. Cardiac morphology and function were evaluated by histology and echocardiography. An ex vivo Langendorff perfusion system was used to model cardiac ischemia/reperfusion (I/R). RESULTS: Here, we report that Set7 protein levels were enhanced in the heart and perigonadal adipose tissue (PAT) of female mice fed an obesogenic diet. Significantly, loss of Set7 prevented obesogenic diet-induced glucose intolerance in female mice although it did not affect the obesogenic diet-induced increase in body weight gain and adiposity in these animals, nor did Set7 inhibition change white adipogenic differentiation in vitro. In addition, loss of Set7 prevented the compromised cardiac functional recovery following ischemia and reperfusion (I/R) injury in obesogenic diet-fed female mice; however, deletion of Set7 did not influence obesogenic diet-induced cardiac hypertrophy nor the hemodynamic and echocardiographic parameters. CONCLUSION: These data indicate that Set7 plays a key role in obesogenic diet-induced glucose intolerance and compromised myocardial functional recovery after I/R in obese female mice.


Asunto(s)
Intolerancia a la Glucosa , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Isquemia , Ratones , Ratones Noqueados , Ratones Obesos , Obesidad/metabolismo , Reperfusión/efectos adversos
5.
Exp Physiol ; 107(8): 892-905, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35765992

RESUMEN

NEW FINDINGS: What is the central question of this study? What is the effect of an obesogenic diet on the expression of microRNAs (miRNAs) involved in cardiac hypertrophy in female mice? What is the main finding and its importance? Female mice fed an obesogenic diet exhibited cardiac hypertrophy associated with increased levels of miRNA-143-3p, decreased mRNA levels of Sox6 and increased mRNA levels of Myh7. Inhibition of miRNA-143-3p increased Sox6 mRNA levels and reduced Myh7 expression in cardiomyocytes, and prevented angiotensin II-induced cardiomyocyte hypertrophy. The results indicate that the miRNA-143-3p-Sox6-Myh7 pathway may play a key role in obesity-induced cardiac hypertrophy. ABSTRACT: Obesity induces cardiometabolic disorders associated with a high risk of mortality. We have previously shown that the microRNA (miRNA) expression profile is changed in obesity-induced cardiac hypertrophy in male mice. Here, we investigated the effect of an obesogenic diet on the expression of miRNAs involved in cardiac hypertrophy in female mice. Female mice fed an obesogenic diet displayed an increased body weight gain, glucose intolerance, insulin resistance and dyslipidaemia. In addition, obese female mice exhibited cardiac hypertrophy associated with increased levels of several miRNAs, including miR-143-3p. Bioinformatic analysis identified Sox6, regulator of Myh7 gene transcription, as a predicted target of miR-143-3p. Female mice fed an obesogenic diet exhibited decreased mRNA levels of Sox6 and increased expression of Myh7 in the heart. Loss-of-function studies in cardiomyocytes revealed that inhibition of miR-143-3p increased Sox6 mRNA levels and reduced Myh7 expression. Collectively, our results indicate that obesity-associated cardiac hypertrophy in female mice is accompanied by alterations in diverse miRNAs, and suggest that the miR-143-3p-Sox6-Myh7 pathway may play a key role in obesity-induced cardiac hypertrophy.


Asunto(s)
Cardiomegalia , MicroARNs , Animales , Cardiomegalia/metabolismo , Dieta , Femenino , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Obesidad/metabolismo , ARN Mensajero/metabolismo , Factores de Transcripción SOXD/metabolismo
6.
Metabolism ; 117: 154723, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33549579

RESUMEN

BACKGROUND: Obesity, characterized by excessive expansion of white adipose tissue (WAT), is associated with numerous metabolic complications. Conversely, brown adipose tissue (BAT) and beige fat are thermogenic tissues that protect mice against obesity and related metabolic disorders. We recently reported that deletion of miR-22 enhances energy expenditure and attenuates WAT expansion in response to a high-fat diet (HFD). However, the molecular mechanisms involved in these effects mediated by miR-22 loss are unclear. METHODS AND RESULTS: Here, we show that miR-22 expression is induced during white, beige, and brown adipocyte differentiation in vitro. Deletion of miR-22 reduced white adipocyte differentiation in vitro. Loss of miR-22 prevented HFD-induced expression of adipogenic/lipogenic markers and adipocyte hypertrophy in murine WAT. In addition, deletion of miR-22 protected mice against HFD-induced mitochondrial dysfunction in WAT and BAT. Loss of miR-22 induced WAT browning. Gain- and loss-of-function studies revealed that miR-22 did not affect brown adipogenesis in vitro. Interestingly, miR-22 KO mice fed a HFD displayed increased expression of genes involved in thermogenesis and adrenergic signaling in BAT when compared to WT mice fed the same diet. CONCLUSIONS: Collectively, our findings suggest that loss of miR-22 attenuates fat accumulation in response to a HFD by reducing white adipocyte differentiation and increasing BAT activity, reinforcing miR-22 as a potential therapeutic target for obesity-related disorders.


Asunto(s)
Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Dieta Alta en Grasa/efectos adversos , MicroARNs/genética , Adipogénesis/genética , Animales , Diferenciación Celular/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Obesidad/genética , Obesidad/metabolismo
7.
Cell Physiol Biochem ; 54(6): 1199-1217, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33252886

RESUMEN

BACKGROUND/AIMS: Obesity is a risk factor associated with cardiometabolic complications. Recently, we reported that miRNA-22 deletion attenuated high-fat diet-induced adiposity and prevented dyslipidemia without affecting cardiac hypertrophy in male mice. In this study, we examined the impact of miRNA-22 in obesogenic diet-induced cardiovascular and metabolic disorders in females. METHODS: Wild type (WT) and miRNA-22 knockout (miRNA-22 KO) females were fed a control or an obesogenic diet. Body weight gain, adiposity, glucose tolerance, insulin tolerance, and plasma levels of total cholesterol and triglycerides were measured. Cardiac and white adipose tissue remodeling was assessed by histological analyses. Echocardiography was used to evaluate cardiac function and morphology. RNA-sequencing analysis was employed to characterize mRNA expression profiles in female hearts. RESULTS: Loss of miRNA-22 attenuated body weight gain, adiposity, and prevented obesogenic diet-induced insulin resistance and dyslipidemia in females. WT obese females developed cardiac hypertrophy. Interestingly, miRNA-22 KO females displayed cardiac hypertrophy without left ventricular dysfunction and myocardial fibrosis. Both miRNA-22 deletion and obesogenic diet changed mRNA expression profiles in female hearts. Enrichment analysis revealed that genes associated with regulation of the force of heart contraction, protein folding and fatty acid oxidation were enriched in hearts of WT obese females. In addition, genes related to thyroid hormone responses, heart growth and PI3K signaling were enriched in hearts of miRNA-22 KO females. Interestingly, miRNA-22 KO obese females exhibited reduced mRNA levels of Yap1, Egfr and Tgfbr1 compared to their respective controls. CONCLUSION: This study reveals that miRNA-22 deletion induces cardiac hypertrophy in females without affecting myocardial function. In addition, our findings suggest miRNA-22 as a potential therapeutic target to treat obesity-related metabolic disorders in females.


Asunto(s)
Cardiomegalia , Dieta Alta en Grasa/efectos adversos , Eliminación de Gen , Enfermedades Metabólicas , MicroARNs/genética , Miocardio , Obesidad , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Femenino , Enfermedades Metabólicas/inducido químicamente , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Miocardio/metabolismo , Miocardio/patología , Obesidad/inducido químicamente , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología
8.
Mol Cell Endocrinol ; 498: 110576, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31520674

RESUMEN

Obesity is the major risk factor for several cardiovascular and metabolic disorders. Previous studies reported that deletion of Angiotensin II type 2 receptor (AT2R) protects against metabolic dysfunctions induced by high fat (HF) diet. However, the role of AT2R in obesity-induced cardiac hypertrophy remains unclear. Male AT2R knockout (AT2RKO) and wild type (AT2RWT) mice were fed with control or HF diet for 10 weeks. HF diet increased cardiac expression of AT2R in obese mice. Deletion of AT2R did not affect body weight gain, glucose intolerance and fat mass gain induced by HF feeding. However, loss of AT2R prevented HF diet-induced hypercholesterolemia and cardiac remodeling. Mechanistically, we found that pharmacological inhibition or knockdown of AT2R prevented leptin-induced cardiomyocyte hypertrophy in vitro. Collectively, our results suggest that AT2R is involved in obesity-induced cardiac hypertrophy.


Asunto(s)
Cardiomegalia/etiología , Dieta Alta en Grasa/efectos adversos , Intolerancia a la Glucosa/etiología , Hipercolesterolemia/etiología , Resistencia a la Insulina , Obesidad/complicaciones , Receptor de Angiotensina Tipo 2/fisiología , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patología , Leptina/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología
9.
Nat Commun ; 10(1): 329, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30659190

RESUMEN

We previously demonstrated that beta II protein kinase C (ßIIPKC) activity is elevated in failing hearts and contributes to this pathology. Here we report that ßIIPKC accumulates on the mitochondrial outer membrane and phosphorylates mitofusin 1 (Mfn1) at serine 86. Mfn1 phosphorylation results in partial loss of its GTPase activity and in a buildup of fragmented and dysfunctional mitochondria in heart failure. ßIIPKC siRNA or a ßIIPKC inhibitor mitigates mitochondrial fragmentation and cell death. We confirm that Mfn1-ßIIPKC interaction alone is critical in inhibiting mitochondrial function and cardiac myocyte viability using SAMßA, a rationally-designed peptide that selectively antagonizes Mfn1-ßIIPKC association. SAMßA treatment protects cultured neonatal and adult cardiac myocytes, but not Mfn1 knockout cells, from stress-induced death. Importantly, SAMßA treatment re-establishes mitochondrial morphology and function and improves cardiac contractility in rats with heart failure, suggesting that SAMßA may be a potential treatment for patients with heart failure.


Asunto(s)
Insuficiencia Cardíaca/tratamiento farmacológico , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas Mitocondriales/antagonistas & inhibidores , Péptidos/farmacología , Proteína Quinasa C beta/antagonistas & inhibidores , Animales , GTP Fosfohidrolasas/metabolismo , Técnicas de Inactivación de Genes , Insuficiencia Cardíaca/metabolismo , Masculino , Membranas Mitocondriales/metabolismo , Contracción Miocárdica , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Fosforilación , ARN Interferente Pequeño , Ratas Wistar
10.
Front Physiol ; 7: 479, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27818636

RESUMEN

Disruption of mitochondrial homeostasis is a hallmark of cardiac diseases. Therefore, maintenance of mitochondrial integrity through different surveillance mechanisms is critical for cardiomyocyte survival. In this review, we discuss the most recent findings on the central role of mitochondrial quality control processes including regulation of mitochondrial redox balance, aldehyde metabolism, proteostasis, dynamics, and clearance in cardiac diseases, highlighting their potential as therapeutic targets.

11.
Int J Cardiol ; 179: 129-38, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25464432

RESUMEN

BACKGROUND/OBJECTIVES: We previously demonstrated that reducing cardiac aldehydic load by aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme responsible for metabolizing the major lipid peroxidation product, protects against acute ischemia/reperfusion injury and chronic heart failure. However, time-dependent changes in ALDH2 profile, aldehydic load and mitochondrial bioenergetics during progression of post-myocardial infarction (post-MI) cardiomyopathy are unknown and should be established to determine the optimal time window for drug treatment. METHODS: Here we characterized cardiac ALDH2 activity and expression, lipid peroxidation, 4-hydroxy-2-nonenal (4-HNE) adduct formation, glutathione pool and mitochondrial energy metabolism and H2O2 release during the 4 weeks after permanent left anterior descending (LAD) coronary artery occlusion in rats. RESULTS: We observed a sustained disruption of cardiac mitochondrial function during the progression of post-MI cardiomyopathy, characterized by >50% reduced mitochondrial respiratory control ratios and up to 2 fold increase in H2O2 release. Mitochondrial dysfunction was accompanied by accumulation of cardiac and circulating lipid peroxides and 4-HNE protein adducts and down-regulation of electron transport chain complexes I and V. Moreover, increased aldehydic load was associated with a 90% reduction in cardiac ALDH2 activity and increased glutathione pool. Further supporting an ALDH2 mechanism, sustained Alda-1 treatment (starting 24h after permanent LAD occlusion surgery) prevented aldehydic overload, mitochondrial dysfunction and improved ventricular function in post-MI cardiomyopathy rats. CONCLUSION: Taken together, our findings demonstrate a disrupted mitochondrial metabolism along with an insufficient cardiac ALDH2-mediated aldehyde clearance during the progression of ventricular dysfunction, suggesting a potential therapeutic value of ALDH2 activators during the progression of post-myocardial infarction cardiomyopathy.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Benzamidas/uso terapéutico , Benzodioxoles/uso terapéutico , Cardiomiopatías/metabolismo , Progresión de la Enfermedad , Proteínas Mitocondriales/metabolismo , Infarto del Miocardio/metabolismo , Aldehído Deshidrogenasa Mitocondrial , Aldehídos/metabolismo , Animales , Benzamidas/farmacología , Benzodioxoles/farmacología , Cardiomiopatías/tratamiento farmacológico , Masculino , Infarto del Miocardio/tratamiento farmacológico , Ratas , Ratas Wistar
12.
Cardiovasc Res ; 103(4): 498-508, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24817685

RESUMEN

AIMS: We previously demonstrated that pharmacological activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) protects the heart against acute ischaemia/reperfusion injury. Here, we determined the benefits of chronic activation of ALDH2 on the progression of heart failure (HF) using a post-myocardial infarction model. METHODS AND RESULTS: We showed that a 6-week treatment of myocardial infarction-induced HF rats with a selective ALDH2 activator (Alda-1), starting 4 weeks after myocardial infarction at a time when ventricular remodelling and cardiac dysfunction were present, improved cardiomyocyte shortening, cardiac function, left ventricular compliance and diastolic function under basal conditions, and after isoproterenol stimulation. Importantly, sustained Alda-1 treatment showed no toxicity and promoted a cardiac anti-remodelling effect by suppressing myocardial hypertrophy and fibrosis. Moreover, accumulation of 4-hydroxynonenal (4-HNE)-protein adducts and protein carbonyls seen in HF was not observed in Alda-1-treated rats, suggesting that increasing the activity of ALDH2 contributes to the reduction of aldehydic load in failing hearts. ALDH2 activation was associated with improved mitochondrial function, including elevated mitochondrial respiratory control ratios and reduced H2O2 release. Importantly, selective ALDH2 activation decreased mitochondrial Ca(2+)-induced permeability transition and cytochrome c release in failing hearts. Further supporting a mitochondrial mechanism for ALDH2, Alda-1 treatment preserved mitochondrial function upon in vitro aldehydic load. CONCLUSIONS: Selective activation of mitochondrial ALDH2 is sufficient to improve the HF outcome by reducing the toxic effects of aldehydic overload on mitochondrial bioenergetics and reactive oxygen species generation, suggesting that ALDH2 activators, such as Alda-1, have a potential therapeutic value for treating HF patients.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Insuficiencia Cardíaca/enzimología , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Remodelación Ventricular/fisiología , Aldehído Deshidrogenasa Mitocondrial , Animales , Insuficiencia Cardíaca/fisiopatología , Masculino , Contracción Miocárdica/fisiología , Miocitos Cardíacos/enzimología , Ratas Wistar , Función Ventricular/fisiología
13.
Pesqui. vet. bras ; Pesqui. vet. bras;30(11): 996-1002, Nov. 2010. ilus, tab
Artículo en Portugués | LILACS | ID: lil-570711

RESUMEN

O desenvolvimento do sistema nervoso é bastante complexo, existindo poucos estudos sobre a organização dos envoltórios cerebrais relacionados ao crescimento encefálico. Utilizando como modelo experimental o rato, analisaram-se os diferentes aspectos estruturais e morfométricos da paquimeninge e leptomeninge durante o processo de envelhecimento. Foram utilizados quatro grupos de ratos em diferentes faixas etárias e analisadas as meninges em microscopias de luz e eletrônica. Verificamos que o grupo de ratos adultos apresentou uma maior área de fibras colágenas tanto do tipo I e quanto do tipo III, em relação aos outros grupos. Encontramos também que as fibras colágenas do tipo III em todos os grupos analisados ocupam uma maior área quando comparados com as fibras do tipo I. Os resultados revelam que a coloração de Weigert Oxona, que mostra fibras elásticas, elaunínicas e oxitalânicas, apresentou uma diferença estatisticamente maior de fibras quando comparados com as colorações de Weigert e Verhoeff, que mostra fíbras elaunínicas e elásticas, respectivamente. Os resultados ultra-estruturais demonstraram a presença de muitos fibroblastos e mitocôndrias tanto na paquimeninge como nas leptomeninges dos grupos de ratos neonatos e adultos, indicativo de alta atividade celular e conseqüentemente, intensa formação de tecido conjuntivo. Como as fibras colágenas do tipo III atuam na manutenção da estrutura de tecidos delicados e expansíveis, o estudo mostra que as funções das meninges encefálicas não estão relacionadas apenas com a resistência a trações e tensões a que estão sujeitas o encéfalo. Mas também a função relacionada com a distensibilidade dos vasos meníngeos e cerebrais de acordo com a necessidade do aporte sanguíneo em diversas funções específicas regionais do tecido nervoso.


The development of the nervous system is very complex and there are few studies about the organization of the brain envoltories related to the encephalus growing. Using the rat as an animal model, it was proposed to evaluate the several structural aspects of paquimeninge and leptomeninge in different ages. It was used 4 groups of different ages and processed according to the techniques of the light and transmission microscopy. It was verified that the adult rats present a higher area of collagen fibers of type I and III, if compared to the others groups. It was found that, the collagen fibers of type III occupy, in all analyzed groups, a higher area when compared to type I fibers. The results reveal that the Weigert Oxona's staining, which shows elastics, elauninics, and oxitalanics fibers, showed a statistically difference when compared to the Weigert's staining and Verhoeff's staining that show elauninics and elastics fibers, respectively. The ultra-structural aspects demonstrated the presence of many fibroblasts and mitochondria in the paquimeninge and also in the leptomeninges of the neonats and adults groups, indicating the high cellular activity and consequently, an intense formation of conjunctive tissue. As collagen fibers of type III acting on the structural maintenance of delicate and expansive tissues, the study shows that the function of the encephalic meninges are not only related to the to resistance to tractions and tensions that the encephalus is subjected. But also the function related to the distensibility of the meningeos and brain vases according to the sanguineous apport in several specific functions of the nervous system.


Asunto(s)
Animales , Quistes Aracnoideos/veterinaria , Encéfalo/fisiopatología , Meningitis/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...