RESUMEN
Krom Luang Chumphon Khet Udomsak remedy (KKR) has traditionally been used as an alternative treatment, particularly for hyperglycemia; however, its therapeutic efficacy has not been scientifically validated. Thus, this study aims to investigate the potential inhibitory and antioxidant effects of α-glucosidase enzyme and characterize the chemical profile of KKR extracts using gas chromatography-mass spectrometry (GC-MS). The investigation highlights both KKR extracts as potent inhibitors of α-glucosidase, with the ethanolic extract of KKR (KKRE) displaying an IC50 value of 46.80 µg/mL and a noncompetitive mode of action. The combination of ethanolic and aqueous extracts of KKR (KKRE and KKRA, respectively) with acarbose exhibited a synergistic effect against the α-glucosidase. The KKRE extract displayed strong scavenging effects in the DPPH assay (IC50 156.3 µg/mL) and contained significant total phenolic (172.82 mg GAE/g extract) and flavonoid (77.41 mg QE/g extract) contents. The major component of KKRE is palmitic acid (15.67%). Molecular docking revealed that the major compounds interacted with key amino acid residues (ASP215, GLU277, HIS351, ASP352, and ARG442), which are crucial for inhibiting α-glucosidase. Notably, campesterin had a more significant influence on α-glucosidase than acarbose, with low binding energy. These findings underscore the significance of KKR in traditional medicine and suggest that it is promising treatment for diabetes mellitus. Further studies using animal model will provide valuable insights for advancing this research.
RESUMEN
Bacterial meningitis remains one of the most prevalent infectious diseases worldwide. Although advances in medical care have improved mortality and morbidity, neurological complications remain high. Therefore, aside from antibiotics, therapeutic adjuvants targeting neuroinflammation are essential to combat the long-term neuronal sequelae of bacterial meningitis. In the present study, we propose (-)-dendroparishiol as a potential add-on therapy to improve neuroinflammation associated with bacterial meningitis. The biological activity of (-)-dendroparishiol was first predicted by computational analysis and further confirmed in vitro using a cell-based assay with LPS-induced BV-2 microglial cells. Biological pathways involved with (-)-dendroparishiol were identified by applying network pharmacology. Computational predictions of biological activity indicated possible attenuation of several inflammatory processes by (-)-dendroparishiol. In LPS-induced BV-2 microglial cells, (-)-dendroparishiol significantly reduced the expression of inflammatory mediators: iNOS, NO, COX-2, IL-6, and TNF-α. Molecular docking results demonstrated the potential iNOS and COX-2 inhibitory activity of (-)-dendroparishiol. Network pharmacological analysis indicated the plausible role of (-)-dendroparishiol in biological processes involved in oxidative stress and neuroinflammation with enrichment in neuroinflammatory pathways. Overall, this study provides scientific evidence for the potential application of (-)-dendroparishiol in the management of bacterial meningitis-associated neuroinflammation.
Asunto(s)
Inflamación , Meningitis Bacterianas , Humanos , Inflamación/metabolismo , Enfermedades Neuroinflamatorias , Lipopolisacáridos/efectos adversos , Simulación del Acoplamiento Molecular , Farmacología en Red , Microglía/metabolismo , Meningitis Bacterianas/metabolismo , FN-kappa B/metabolismoRESUMEN
Kratom (Mitragyna speciosa (Korth.) Havil.) has been used to reduce blood sugar and lipid profiles in traditional medicine, and mitragynine is a major constituent in kratom leaves. Previous data on the blood sugar and lipid-altering effects of kratom are limited. In this study, phytochemical analyses of mitragynine, 7-hydroxymitragynine, quercetin, and rutin were performed in kratom extracts. The effects on α-glucosidase and pancreatic lipase activities were investigated in kratom extracts and mitragynine. The LC-MS/MS analysis showed that the mitragynine, quercetin, and rutin contents from kratom extracts were different. The ethanol extract exhibited the highest total phenolic content (TPC), total flavonoid content (TFC), and total alkaloid content (TAC). Additionally, compared to methanol and aqueous extracts, the ethanol extract showed the strongest inhibition activity against α-glucosidase and pancreatic lipase. Compared with the anti-diabetic agent acarbose, mitragynine showed the most potent α-glucosidase inhibition, with less potent activity of pancreatic lipase inhibition. Analysis of α-glucosidase and pancreatic lipase kinetics revealed that mitragynine inhibited noncompetitive and competitive effects, respectively. Combining mitragynine with acarbose resulted in a synergistic interaction with α-glucosidase inhibition. These results have established the potential of mitragynine from kratom as a herbal supplement for the treatment and prevention of diabetes mellitus.
Asunto(s)
Mitragyna , Acarbosa , Glucemia/análisis , Cromatografía Liquida , Etanol/análisis , Lipasa , Lípidos/análisis , Metanol , Mitragyna/química , Extractos Vegetales/química , Hojas de la Planta/química , Quercetina/análisis , Rutina/análisis , Espectrometría de Masas en Tándem , alfa-GlucosidasasRESUMEN
PCSK9 is a promising target for developing novel cholesterol-lowering drugs. We developed a recipe that combined molecular docking, GC-MS/MS, and real-time PCR to identify potential PCSK9 inhibitors for herb ratio determination. Three herbs, Carthamus tinctorius, Coscinium fenestratum, and Zingiber officinale, were used in this study. This work aimed to evaluate cholesterol-lowering through a PCSK9 inhibitory mechanism of these three herbs for defining a suitable ratio. Chemical constituents were identified using GC-MS/MS. The PCSK9 inhibitory potential of the compounds was determined using molecular docking, real-time PCR, and Oil red O staining. It has been shown that most of the active compounds of C. fenestratum and Z. officinale inhibit PCSK9 when extracted with water, and C. fenestratum has been shown to yield tetraacetyl-d-xylonic nitrile (27.92%) and inositol, 1-deoxy-(24.89%). These compounds could inhibit PCSK9 through the binding of 6 and 5 hydrogen bonds, respectively, while the active compound in Z. officinale is 2-Formyl-9-[.beta.-d-ribofuranosyl] hypoxanthine (4.37%) inhibits PCSK9 by forming 8 hydrogen bonds. These results suggest that a recipe comprising three parts C. fenestratum, two parts Z. officinale, and one part C. tinctorius is a suitable herbal ratio for reducing lipid levels in the bloodstream through a PCSK9 inhibitory mechanism.
RESUMEN
A simple fluorescence-based lateral flow test platform for rapid influenza B virus screening as a model target molecule was successfully developed. In this work, Cy5-loaded silica nanoparticles were directly conjugated to monoclonal antibodies, specific to the influenza B nucleoprotein, via a direct physisorption method and used as detector probes. Using this approach, the signal response to the detection was further determined using a fluorescent signal intensity measurement method via a portable reader, in combination with fluorescence imaging analysis. The degree to which the fluorescence signal response is detected is proportional to the amount of the target virus protein present in the system, reflected by the accumulation of the formed particle-antibody conjugates within the test system. Under optimized conditions, the system is capable of detecting the influenza B virus protein at a level of 0.55 µg per test within 30 min, using small sample volumes as low as 100 µL (R2 = 0.9544). In addition to its simplicity, further application of the system in detecting the influenza B virus protein was demonstrated using the viral transport media as specimen matrices. It was also shown that the system can perform the detection without cross-reactivity to other closely related respiratory viruses.
Asunto(s)
Virus de la Influenza B , Gripe Humana , Reacciones Cruzadas , Fluorescencia , Humanos , Gripe Humana/diagnósticoRESUMEN
Neuropathic pain is a debilitating chronic pain condition, and its treatment remains a clinical challenge. Curcumin, a naturally occurring phenolic compound, possesses diverse biological and pharmacological effects but has not yet been approved as a drug due to its low bioavailability. In order to overcome this limitation, we synthesized a potential ester prodrug of curcumin, curcumin diethyl diglutarate (CurDDG). In this study, we evaluated the pharmacological advantages of CurDDG over curcumin in a mouse model of chronic constriction injury (CCI), and the anti-inflammatory effect of CurDDG in LPS-induced RAW 264.7 macrophage cells was accessed to clarify the underline mechanism. Mice were treated with various oral doses of curcumin (25, 50, 100 and 200 mg/kg/day, daily for 14 days) or equimolar doses of CurDDG. CurDDG at all doses tested significantly attenuated CCI-induced thermal hyperalgesia and mechanical allodynia compared with the CCI-control group. CurDDG at 25, 50 and 100 mg/kg demonstrated significantly greater efficacy on both mechanical and thermal hypersensitivities compared to that of curcumin. The effect of CurDDG correlated well with the inhibition of TNF-α and IL-6 levels in both the sciatic nerve and the spinal cord, as compared to its respective control groups. Similarly, in the in vitro study, CurDDG significantly reduced the LPS-induced expression of TNF-α and IL-6. Moreover, CurDDG significantly decreased COX-2 and iNOS levels and attenuated p38, JNK, and ERK1/2 phosphorylation as compared to the curcumin-treated cells. Altogether, this study demonstrated the improved pharmacological effects of curcumin by its diglutarate conjugate, CurDDG.
Asunto(s)
Analgésicos/farmacología , Antiinflamatorios/farmacología , Curcumina/análogos & derivados , Curcumina/farmacología , Glutaratos/farmacología , Hiperalgesia/prevención & control , Umbral del Dolor/efectos de los fármacos , Profármacos/farmacología , Nervio Ciático/efectos de los fármacos , Ciática/prevención & control , Médula Espinal/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Mediadores de Inflamación/metabolismo , Interleucina-6/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosforilación , Células RAW 264.7 , Nervio Ciático/metabolismo , Nervio Ciático/fisiopatología , Ciática/metabolismo , Ciática/fisiopatología , Transducción de Señal , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Succinatos , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
The drug treatment for neuropathic pain remains a challenge due to poor efficacy and patient satisfaction. Curcumin has been reported to alleviate neuropathic pain, but its clinical application is hindered by its low solubility and poor oral bioavailability. Curcumin diglutaric acid (CurDG) is a curcumin prodrug with improved water solubility and in vivo antinociceptive effects. In this study, we investigated the anti-inflammatory mechanisms underlying the analgesic effect of CurDG in the chronic constriction injury (CCI)-induced neuropathy mouse model. Repeated oral administration of CurDG at a low dose equivalent to 25 mg/kg/day produced a significant analgesic effect in this model, both anti-allodynic activity and anti-hyperalgesic activity appearing at day 3 and persisting until day 14 post-CCI surgery (p < 0.001) while having no significant effect on the motor performance. Moreover, the repeated administration of CurDG diminished the increased levels of the pro-inflammatory cytokines: TNF-α and IL-6 in the sciatic nerve and the spinal cord at the lowest tested dose (equimolar to 25 mg/kg curcumin). This study provided pre-clinical evidence to substantiate the potential of pursuing the development of CurDG as an analgesic agent for the treatment of neuropathic pain.